(2001•黃岡)求一次函數(shù)y=x-2和反比例函數(shù)y=
3x
的圖象的交點坐標(biāo).
分析:根據(jù)反比例函數(shù)與一次函數(shù)的交點坐標(biāo)同時滿足兩函數(shù)的解析式得到方程組
y=x-2
y=
3
x
,然后解方程組即可得到交點坐標(biāo).
解答:解:依題意有
y=x-2
y=
3
x

解得
x=3
y=1
x=-1
y=-3

所以一次函數(shù)y=x-2和反比例函數(shù)y=
3
x
的圖象的交點坐標(biāo)坐標(biāo)為(3,1)和(-1,-3).
點評:本題考查了反比例函數(shù)與一次函數(shù)的交點問題:反比例函數(shù)與一次函數(shù)的交點坐標(biāo)同時滿足兩函數(shù)的解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2001•黃岡)甲、乙兩地間鐵路長400千米,為了適應(yīng)兩地經(jīng)濟(jì)發(fā)展的需要,現(xiàn)將火車的行駛速度每小時比原來提高了45千米,因此,火車由甲地至乙地的行駛時間縮短了2小時,求火車原來的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2001•黃岡)已知,如圖,⊙O1和⊙O2內(nèi)切于點P,過點P的直線交⊙O1于點D,交⊙O2于點E;DA與⊙O2相切,切點為C.
(1)求證:PC平分∠APD;
(2)PE=3,PA=6,求PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2001•黃岡)先閱讀下列第(1)題的解答過程:
(1)已知a,β是方程x2+2x-7=0的兩個實數(shù)根,求a2+3β2+4β的值.
解法1:∵a,β是方程x2+2x-7=0的兩個實數(shù)根,
∴a2+2a-7=0,β2+2β-7=0,且a+β=-2.
∴a2=7-2a,β2=7-2β.
∴a2+3β2+4β=7-2a+3(7-2β)+4β=28-2(a+β)=28-2×(-2)=32.
解法2:由求根公式得a=1+2
2
,β=-1-2
2

∴a2+3β2+4β=(-1+2
2
2+3(-1-2
2
2+4(-1-2
2

=9-4
2
+3(9+4
2
)-4-8
2
=32.
當(dāng)a=-1-2
2
,β=-1+2
2
時,同理可得a2+3β2+4β=32.
解法3:由已知得a+β=-2,aβ=-7.
∴a22=(a+β)2-2aβ=18.
令a2+3β2+4β=A,β2+3a2+4a=B.
∴A+B=4(a22)+4(a+β)=4×18+4×(-2)=64.①
A-B=2(β2-a2)+4(β-a)=2(β+a)(β-a)+4(β-a)=0.②
①+②,得2A=64,∴A=32.
請仿照上面的解法中的一種或自己另外尋注一種方法解答下面的問題:
(2)已知x1,x2是方程x2-x-9=0的兩個實數(shù)根,求代數(shù)式x13+7x22+3x2-66的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2001•黃岡)已知一個二次函數(shù)的圖象經(jīng)過A(4,-3),B(2,1)和C(-1,-8)三點.
(1)求這個二次函數(shù)的解析式以及它的圖象與x軸的交點M,N(M在N的左邊)的坐標(biāo).
(2)若以線段MN為直徑作⊙G,過坐標(biāo)原點O作⊙G的切線OD,切點為D,求OD的長.
(3)求直線OD的解析式.
(4)在直線OD上是否存在點P,使得△MNP是直角三角形?如果存在,求出點P的坐標(biāo)(只需寫出結(jié)果,不必寫出解答過程);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案