【題目】如圖,ABC在直角坐標(biāo)系中,

(1)ABC中任意一點M(a,b)經(jīng)過平移后的對應(yīng)點為M′(a+2,b+1),將ABC作同樣的平移,得到A′B′C′,寫出A′、B′、C′的坐標(biāo),并在圖中畫出平移后圖形.

(2)求出三角形ABC的面積.

【答案】(1)A′B′C′如圖所示,A′(0,-1)、B′(5,2),C′(2,3);(2)ABC的面積=7.

【解析】分析:(1)、根據(jù)題意得出圖像的平移法則為向右平移2個單位,再向上平移1個單位,根據(jù)平移法則得出各點平移后的位置,然后順次連接得出答案;(2)、三角形的面積利用矩形的面積減去三個直角三角形的面積得到.

詳解:解:(1)A′B′C′如圖所示,

A′(0,-1)、B′(5,2),C′(2,3);

(2)ABC的面積=5×4﹣×2×4﹣×5×3﹣×1×3=20﹣4﹣7.5﹣1.5=20﹣13=7.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場第1次用39萬元購進A、B兩種商品,銷售完后獲得利潤6萬元,它們的進價和售價如下表:(總利潤=單件利潤×銷售量)

商品

價格

A

B

進價(元/件)

1200

1000

售價(元/件)

1350

1200

(1)該商場第1次購進A、B兩種商品各多少件?

(2)商場第2次以原價購進A、B兩種商品,購進A商品的件數(shù)不變,而購進B商品的件數(shù)是第1次的2倍,A商品按原價銷售,而B商品打折銷售,若兩種商品銷售完畢,要使得第2次經(jīng)營活動獲得利潤等于54000元,則B種商品是打幾折銷售的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“轉(zhuǎn)化”是數(shù)學(xué)中的一種重要思想,即把陌生的問題轉(zhuǎn)化成熟悉的問題,把復(fù)雜的問題轉(zhuǎn)化成簡單的問題,把抽象的問題轉(zhuǎn)化為具體的問題.

已知:如圖1,線段AB、CD相交于點O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”,試解答下列問題:

問題一在圖1中,請直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系   

問題二:在圖2中,若∠D=40°,∠B=36°,∠DAB和BCD的平分線AP和CP相交于點P,并且與CD、AB分別相交于M、N,試求P的度數(shù);

問題三:在圖3中,已知AP、CP分別平分∠BAM、∠BCD,請問P與∠B、∠D之間存在著怎樣的數(shù)量關(guān)系?并說明理由.

問題四:在圖4中,已知AP的反向延長線平分∠EAB,CP平分∠DCF,請直接寫出∠P與∠B、∠D之間的數(shù)量關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)是(4,3),動圓D經(jīng)過A,O,分別與兩坐標(biāo)軸的正半軸交于點E,F(xiàn).當(dāng)EF⊥OA時,此時EF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個自然數(shù)m,若將其數(shù)字重新排列可得一個新的自然數(shù)n,如果m=3n,我們稱m是一個希望數(shù).例如:3105=3×1035,71253=3×23751,371250=3×123750.

(1)請說明41不是希望數(shù),并證明任意兩位數(shù)都不可能是希望數(shù)”.

2)一個四位希望數(shù)”M記為,已知,且c=2,請求出這個四位希望數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種電視機原價每臺2600元,國慶期間以九五折出售,并且商家規(guī)定滿2000元返200元.若購買這種電視機實際需要多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MON=60°,作邊長為1的正六邊形A1B1C1D1E1F1 , 邊A1B1、F1E1分別在射線OM、ON上,邊C1D1所在的直線分別交OM、ON于點A2、F2 , 以A2F2為邊作正六邊形A2B2C2D2E2F2 , 邊C2D2所在的直線分別交OM、ON于點A3、F3 , 再以A3F3為邊作正六邊形A3B3C3D3E3F3 , …,依此規(guī)律,經(jīng)第n次作圖后,點Bn到ON的距離是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C是線段AB的中點,CD平分ACE,CE平分BCDCD=CE;

(1)求證:ACD≌△BCE;

(2)D=50°,求B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,頂點A、B的坐標(biāo)分別是A10),B0,2),頂點CD在雙曲線y=上,邊ADy軸相交于點ES四邊形BEDC=5SABE=10,則k的值是(   )

A. -16 B. -9 C. -8 D. -12

查看答案和解析>>

同步練習(xí)冊答案