【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示根據(jù)圖象解答下列問題:

(1)方程ax2+bx+c=0的兩個根為____________;

(2)不等式ax2+bx+c>0的解集為________;

(3)yx的增大而減小的自變量x的取值范圍為________;

(4)若方程ax2+bx+c=k有兩個不相等的實數(shù)根k的取值范圍為________.

【答案】(1)x1=1,x2=3 (2)1<x<3 (3)x>2 (4)k<2

【解析】

(1)根據(jù)函數(shù)與方程的關系,當y=0時,函數(shù)圖象與x軸的兩個交點的橫坐標即為方程ax2+bx+c=0的兩個根;

(2)根據(jù)函數(shù)的性質可知,在點(1,0)與點(3,0)之間,y>0,即可解答.

(3)根據(jù)函數(shù)的性質可知,在對稱軸的右側,yx的增大而減小,找到函數(shù)的對稱軸即可得到x的取值范圍;

(4)方程ax2+bx+c=k有兩個不相等的實數(shù)根,即函數(shù)y=ax2+bx+c(a≠0)與y=k有兩個交點,據(jù)此即可直接求出k的取值范圍.

解:(1)當y=0時,函數(shù)圖象與x軸的兩個交點的橫坐標即為方程ax2+bx+c=0的兩個根,由圖可知,

方程的兩個根為x1=1,x2=3.

(2)根據(jù)函數(shù)圖象,不等式ax2bxc>0的解集為1<x<3.

(3)根據(jù)函數(shù)圖象,在對稱軸的右側,yx的增大而減小,此時,x>2.

(4)如圖:

方程ax2+bx+c=k有兩個不相等的實數(shù)根,即函數(shù)y=ax2+bx+ca≠0)與y=k有兩個交點,

此時,k<2.

故答案為(1)x1=1,x2=3,(2)1<x<3,(3)x>2,(4)k<2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC∽△ADE,AE=5cm,EC=3cmBC=7cm,BAC=45°,C=40°

1AEDADE的大小;

2DE的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等邊ABC中,點P由點A出發(fā)沿CA方向運動,同時點Q以相同的速度從點B出發(fā)沿BC方向運動,當點Q到達C點時,P,Q兩點都停止運動,連接PQ,交AB于點M

1)如圖①,當PQBC時,求證:APAM

2)如圖②,試說明:在點P和點Q運動的過程中,PMQM

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】海南建省30年來,各項事業(yè)取得令人矚目的成就,以2016年為例,全省社會固定資產總投資約3730億元,其中包括中央項目、省屬項目、地(市)屬項目、縣(市)屬項目和其他項目.圖1、圖2分別是這五個項目的投資額不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請完成下列問題:

(1)在圖1中,先計算地(市)屬項目投資額為   億元,然后將條形統(tǒng)計圖補充完整;

(2)在圖2中,縣(市)屬項目部分所占百分比為m%、對應的圓心角為β,則m=   ,β=   度(m、β均取整數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某天然氣公司的主輸氣管道從市向北偏東方向直線延伸,測繪員在處測得要安裝天然氣的小區(qū)在市北偏東方向,測繪員沿主輸氣管道步行米到達處,測得小區(qū)位于的北偏西方向,請你在主輸氣管道上用尺規(guī)作圖的方法(不寫作法,保留作圖痕跡)找出支管道連接點,使到該小區(qū)鋪設的管道最短,并求出的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次籃球比賽中,如圖隊員甲正在投籃.已知球出手時離地面m,與籃圈中心的水平距離為7 m,球出手后水平距離為4 m時達到最大高度4 m,設籃球運行軌跡為拋物線,籃圈距地面3 m.

(1)建立如圖所示的平面直角坐標系,問此球能否準確投中?

(2)此時,對方隊員乙在甲面前1 m處跳起蓋帽攔截,已知乙的最大摸高為3.1 m,那么他能否獲得成功?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點C處,折痕為EF,若∠EFC120°,那么∠ABE的度數(shù)為__________。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,為等腰直角三角形,,FAC邊上的一個動點(點FA、C不重合),以CF為一邊在等腰直角三角形外作正方形CDEF,連接BF、AD

1)猜想圖1中線段BFAD的數(shù)量關系及所在直線的位置關系,直接寫出結論,_____________

2)將圖1中的正方形CDEF,繞著點C按順時針方向旋轉任意角度,得到如圖2的情形,BFAC于點H,交AD于點O,請你判斷(1)中得到的結論是否仍然成立,證明你的判斷.

3)將圖1中的正方形CDEF,繞著點按逆時針方向旋轉,得到如圖3的情形,點恰好落在斜邊上,若,求正方形CDEF的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,∠B30°,點D、E分別為AB、AC上的點,且DEBC.將△ADE繞點A逆時針旋轉至點B、A、E在同一條直線上,連接BD、EC.下列結論:①△ADE的旋轉角為120°;②BDEC;③BEAD+AC;④DEAC,其中正確的有( )

A.②③B.②③④C.①②③D.①②③④

查看答案和解析>>

同步練習冊答案