【題目】某市為提倡節(jié)約用水,準備實行自來水“階梯計費”方式,為更好地決策,自來水公司隨機抽取了部分用戶的用水量數(shù)據(jù),并繪制了如圖不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)此次抽樣調查的樣本容量是_____;
(2)補全頻數(shù)分布直方圖,并求扇形圖中“15噸~20噸”部分的圓心角度數(shù);
(3)用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費.如果自來水公司將基本用水量定為每戶25噸,那么該地區(qū)6萬用戶中約有多少用戶的用水全部享受基本價格?
【答案】(1)100;(2)圖詳見解析,72°;(3)3.96萬.
【解析】
(1)用10噸~15噸的用戶除以所占的百分比,計算即可得解;(2)用總戶數(shù)減去其它四組的戶數(shù),計算求出15噸~20噸的用戶數(shù),然后補全直方圖即可;用“15噸~20噸”所占的百分比乘以360°計算即可得解;(3)用享受基本價格的用戶數(shù)所占的百分比乘以6萬,計算即可.
(1)10÷10%=100;
(2)用水量在15-20噸之間的用戶數(shù)量:100-(10+36+25+9)=100-80=20
補全頻數(shù)分布直方圖如圖:
扇形圖中“15噸~20噸”部分的圓心角的度數(shù):
(3)樣本中少于25噸的有10+20+36=66(戶)
∴少于25噸的戶數(shù)是: (萬戶)
∴該地區(qū)6萬用戶中約3.96萬用戶的用水全部享受基本價格.
科目:初中數(shù)學 來源: 題型:
【題目】高鐵給我們的出行帶來了極大的方便.如圖,“和諧號”高鐵列車座椅后面的小桌板收起時,小桌板的支架的底端N與桌面頂端M的距離MN=75cm,且可以看作與地面垂直.展開小桌板使桌面保持水平,AB⊥MN,∠MAB=∠MNB=37°,且支架長BN與桌面寬AB的長度之和等于MN的長度.求小桌板桌面的寬度AB(結果精確到1cm,參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將△ABC的紙片按如圖所示的方式折疊,使點B落在邊AC上,記為點B′,折疊痕為EF,已知AB=AC=8,BC=10,若以點B′、F、C為頂點的三角形與△ABC相似,那么BF的長度是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一條不完整的數(shù)軸上從左到右有點A,B,C,其中AB=2,BC=1,如圖所示.設點A,B,C所對應數(shù)的和是p.
(1)若以B為原點,寫出點A,C所對應的數(shù),并計算p的值;若以C為原點,p又是多少?
(2)若原點O在圖中數(shù)軸上點C的右邊,且CO=28,求p.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】當m,n是實數(shù)且滿足m﹣n=mn時,就稱點Q(m, )為“奇異點”,已知點A、點B是“奇異點”且都在反比例函數(shù)y= 的圖象上,點O是平面直角坐標系原點,則△OAB的面積為( )
A.1
B.
C.2
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(0,1)、點B(0,1+t)、C(0,1﹣t)(t>0),點P在以D(3,3)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則t的最小值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,方差是,那么另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均數(shù)和方差分別是( )
A. 2, B. 4,3 C. 4, D. 2,1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:,OE平分,點A、B、C分別是射線OM、OE、ON上的動點、B、C不與點O重合,連接AC交射線OE于點設.
如圖1,若,則
的度數(shù)是______;
當時,______;當時,______.
如圖2,若,則是否存在這樣的x的值,使得中有兩個相等的角?若存在,求出x的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com