【題目】某學(xué)校興趣小組,對(duì)函數(shù)y=|x﹣1|+1的圖像和性質(zhì)進(jìn)行了研究,探究過(guò)程如下:
(1)自變量的取值范圍是全體實(shí)數(shù),與的幾組對(duì)應(yīng)值如表:
X | …… | 0 | 1 | 2 | 3 | 4 | 5 | …… | |||
y | …… | 5 | 4 | m | 2 | 1 | 2 | 3 | 4 | 5 | …… |
其中
(2)在平面直角坐標(biāo)系中,畫(huà)出上表中對(duì)應(yīng)值為點(diǎn)的坐標(biāo),根據(jù)畫(huà)出的點(diǎn),畫(huà)出該函數(shù)的圖象;
(3)根據(jù)畫(huà)出的函數(shù)圖像特征,仿照示例,完成下表中函數(shù)的變化規(guī)律:
序號(hào) | 函數(shù)圖像特征 | 函數(shù)變化規(guī)律 |
示例1 | 在直線的右側(cè),函數(shù)圖像自左至右呈上升趨勢(shì) | 當(dāng)時(shí)y隨x的增大而增大 |
① | 在直線的右側(cè),函數(shù)圖像自左至右呈下降趨勢(shì) | |
示例2 | 函數(shù)圖像經(jīng)過(guò)點(diǎn)(-3,5) | 當(dāng)時(shí) |
② | 函數(shù)圖像的最低點(diǎn)是 | 當(dāng)時(shí),函數(shù)有最(大或小)值,此時(shí) |
(4)當(dāng)時(shí),的取值范圍是_____________
【答案】(1)3;(2)見(jiàn)解析;(3)①當(dāng)<1時(shí),隨的增大而減小,②1,小,1;(4)或
【解析】
(1)把x=-1代入即可求解;
(2)先描點(diǎn),再畫(huà)出圖像即可;
(3)根據(jù)函數(shù)圖像特征即可填表;
(4)根據(jù)函數(shù)圖像即可求出x的取值.
解:(1)當(dāng)x=-1時(shí),y=|-1﹣1|+1=3
∴m=3
故答案為:3;
(2)該函數(shù)的圖象如圖所示
(3)由圖可得①當(dāng)<1時(shí),隨的增大而減小
②當(dāng)=1時(shí),函數(shù)有最小值,此時(shí)=1
故答案為: ①當(dāng)<1時(shí),隨的增大而減小,②1,小,1;
(4)∵
由圖可得的取值范圍是或
故答案為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(-4,0)、(0,2),⊙C的圓心坐標(biāo)為(0,-2),半徑為2.若D是⊙C上的一個(gè)動(dòng)點(diǎn),射線AD與 軸交于點(diǎn)E,則△ABE面積的最大值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=90°,OA=90cm,OB=30cm,一機(jī)器人在點(diǎn)B處看見(jiàn)一個(gè)小球從點(diǎn)A出發(fā)沿著AO方向勻速滾向點(diǎn)O,機(jī)器人立即從點(diǎn)B出發(fā),沿直線勻速前進(jìn)攔截小球,恰好在點(diǎn)C處截住了小球.如果小球滾動(dòng)的速度與機(jī)器人行走的速度相等,那么機(jī)器人行走的路程BC是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,D是線段BC的延長(zhǎng)線上一點(diǎn),以AD為一邊在AD的右側(cè)作△ADE,使AE=AD,∠DAE=∠BAC,連接CE.
(1)如圖1,點(diǎn)D在線段BC的延長(zhǎng)線上移動(dòng),若∠BAC=30°,則∠DCE= .
(2)設(shè)∠BAC=α,∠DCE=β:
①如圖1,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上移動(dòng)時(shí),α與β之間有什么數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
②當(dāng)點(diǎn)D在直線BC上(不與B、C重合)移動(dòng)時(shí),α與β之間有什么數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:菱形OBCD在平面直角坐標(biāo)系中位置如圖所示,點(diǎn)B的坐標(biāo)為(2,0),∠DOB=60°.
(1)點(diǎn)D的坐標(biāo)為 , 點(diǎn)C的坐標(biāo)為;
(2)若點(diǎn)P是對(duì)角線OC上一動(dòng)點(diǎn),點(diǎn)E(0,﹣ ),求PE+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一枚棋子放在⊙O上的點(diǎn)A處,通過(guò)摸球來(lái)確定該棋子的走法.
其規(guī)則如下:在一只不透明的口袋中,裝有3個(gè)標(biāo)號(hào)分別為1,2,3的相同小球.充分?jǐn)噭蚝髲闹须S機(jī)摸出1個(gè),記下標(biāo)號(hào)后放回袋中并攪勻,再?gòu)闹须S機(jī)摸出1個(gè),若摸出的兩個(gè)小球標(biāo)號(hào)之積是m,就沿著圓周按逆時(shí)針?lè)较蜃適步(例如:m=1,則A﹣B;若m=6,則A﹣B﹣C﹣D﹣A﹣B﹣C).用列表或樹(shù)狀圖,分別求出棋子走到A、B、C、D點(diǎn)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在矩形ABCD中,BC=2CD=2a,點(diǎn)E在邊CD上,在矩形ABCD的左側(cè)作矩形ECGF,使CG=2GF=2b,連接BD,CF,連結(jié)AF交BD于點(diǎn)H.
(1)求證:BD∥CF;
(2)求證:H是AF的中點(diǎn);
(3)連結(jié)CH,若HC⊥BD,求a:b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),E是直線AB、CD內(nèi)部一點(diǎn),AB∥CD,連接EA、ED.
(1)探究:
①若∠A=30°,∠D=40°,則∠AED等于多少度?
②若∠A=20°,∠D=60°,則∠AED等于多少度?
③在圖(1)中∠AED、∠EAB、∠EDC有什么數(shù)量關(guān)系,并證明你的結(jié)論.
(2)拓展:如圖(2),射線FE與矩形ABCD的邊AB交于點(diǎn)E,與邊CD交于點(diǎn)F,①②③④分別是被射線FE隔開(kāi)的四個(gè)區(qū)域(不含邊界,其中③④位于直線AB的上方),P是位于以上四個(gè)區(qū)域上點(diǎn),猜想:∠PEB、∠PFC、∠EPF之間的關(guān)系.(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的方格紙中,每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,圖①、圖②、圖③均為頂點(diǎn)都在格點(diǎn)上的三角形(每個(gè)小方格的頂點(diǎn)叫格點(diǎn)),
(1)在圖1中,圖①經(jīng)過(guò)一次變換(填“平移”或“旋轉(zhuǎn)”或“軸對(duì)稱(chēng)”)可以得到圖②;
(2)在圖1中,圖③是可以由圖②經(jīng)過(guò)一次旋轉(zhuǎn)變換得到的,其旋轉(zhuǎn)中心是點(diǎn)(填“A”或 “B”或“C”);
(3)在圖2中畫(huà)出圖①繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后的圖④.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com