闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳婀遍埀顒傛嚀鐎氼參宕崇壕瀣ㄤ汗闁圭儤鍨归崐鐐差渻閵堝棗绗傜紒鈧笟鈧畷婊堫敇閻戝棙瀵岄梺闈涚墕濡鎱ㄨ缁辨帡鎮╅崘鑼紝闂佺粯渚楅崳锝嗘叏閳ь剟鏌曢崼婵囶棤闁告ɑ鎹囬弻鈩冨緞鐏炴垝娌繝銏㈡嚀濡繂鐣峰┑鍡╁悑闁糕剝鍔掔花濠氭⒑閸濆嫬鈧悂鎮樺┑瀣垫晜妞ゆ劑鍊楃壕濂稿级閸稑濡界€规洖鐬奸埀顒冾潐濞叉ḿ鏁幒妤嬬稏婵犻潧顑愰弫鍕煢濡警妲峰瑙勬礋濮婃椽宕ㄦ繝鍕窗闂佺ǹ瀛╂繛濠囧箚鐏炶В鏋庨柟鎯ь嚟閸橀亶姊洪崫鍕偍闁告柨鐭傞幃姗€鎮╅悽鐢碉紲闂佺粯鐟㈤崑鎾绘煕閵娿儳鍩g€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌涘☉姗堟敾闁告瑥绻橀弻锝夊箣閿濆棭妫勯梺鍝勵儎缁舵岸寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閹冣挃缂侇噮鍨抽幑銏犫槈閵忕姷顓洪梺鍝勫暊閸嬫捇鏌涢妶鍛ч柡灞剧洴婵$兘顢欓悡搴樻嫽闂備浇妗ㄧ粈浣该洪銏犺摕闁哄浄绱曢悿鈧梺鍝勬川閸婎偊濡烽敂杞扮盎闂佹寧妫侀褍鈻嶅澶嬬厵妞ゆ梻鐡斿▓婊呪偓瑙勬礃椤ㄥ棗顕ラ崟顒傜瘈濞达絽澹婂Λ婊堟⒒閸屾艾鈧绮堟笟鈧獮澶愬灳鐡掍焦妞介弫鍐磼濮樻唻绱卞┑鐘灱閸╂牠宕濋弴銏犲強闁靛鏅滈悡鐔兼煙闁箑鏋涢柛鏂款儔閺屽秹鏌ㄧ€n亞浼岄梺璇″枛缂嶅﹪鐛笟鈧獮鎺楀箣濠垫劗鈧櫕绻濋悽闈涗粶闁瑰啿绻樺畷婵嗏枎閹惧疇鎽曢梺缁樻⒒閸樠呯矆閸曨垱鐓忛柛顐g箖椤ユ粍銇勮箛銉﹀
(2005•恩施州)如圖,AB為圓O的直徑,C為圓O上一點,AD和過C點的直線互相垂直,垂足為D,且AC平分∠DAB,延長AB交DC于點E.
(1)判定直線DE與圓O的位置關系,并說明你的理由;
(2)求證:AC2=AD•AB;
(3)以下兩個問題任選一題作答.(若兩個問題都答,則以第一問的解答評分)
①若CF⊥AB于點F,試討論線段CF、CE和DE三者的數(shù)量關系;
②若EC=5,EB=5,求圖中陰影部分的面積.

【答案】分析:(1)DE是⊙O的切線.需連接OC,證明OC⊥DE即可;
(2)證明△DAC∽△CAB即可;
(3)①CF+CE=DE,由角平分線的性質可得,CF=CD,而DC+CE=DE,故CF+CE=DE;
②根據(jù)陰影部分的面積=半圓的面積-S△ABC,即可求解.
解答:(1)解:DE是⊙O的切線.(1分)
連接OC,(2分)
∵OA、OC是⊙O的半徑,
∴∠OAC=∠OCA.
∵AC是∠DAB的平分線,
∴∠OAC=∠CAD.
∴∠OCA=∠CAD.
∴OC∥AD.
∵AD⊥DE,
∴OC⊥DE.
故DE是⊙O的切線.(4分)

(2)證明:∵AB為⊙O的直徑,
∴∠ACB=90°.(5分)
∵AD⊥DE,∠ADC=90°,
∴∠ACB=∠ADC.
∵∠DAC=∠CAB,
∴△DAC∽△CAB.
∴AC2=AD•AB.(7分)

(3)解:①CF+CE=DE.(8分)
∵AC是∠DAB的平分線,且CD⊥AD、CF⊥AF,
∴CF=CD.
∵DC+CE=DE,
∴CF+CE=DE.(10分)
②∵DE是⊙O的切線,
∴∠BCE=∠CAB.
∵∠CEB=∠CEB,
∴△BCE∽△CAE.
.(8分)
∴AE=15,AB=10,,即CA=BC.
則在Rt△ABC中,由CA2+BC2=AB2解得:
BC=5,CA=5
∴S△ABC=
∴陰影部分的面積=半圓的面積-S△ABC=.(10分)
點評:此題綜合考查了相似三角形的判定,切線的判定和圓周角定理的綜合運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2005•恩施州)如圖,在平面直角坐標系中,半徑分別為3的⊙O1和⊙O2外切于原點O,在x軸上方的兩圓的外公切線AB與⊙O1和⊙O2分別切于點A、B,直線AB交y軸于點C.O2D⊥O1A于點D.
(1)求∠O1O2D的度數(shù);
(2)求點C的坐標;
(3)求經過O1、C、O2三點的拋物線的解析式;
(4)在拋物線上是否存在點P,使△PO1O2為直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《反比例函數(shù)》(02)(解析版) 題型:選擇題

(2005•恩施州)已知甲、乙兩地相距s千米,汽車從甲地勻速行駛到乙地,如果汽車每小時耗油量為a升,那么從甲地到乙地汽車的總耗油量y(升)與汽車行駛的速度v(千米/小時)的函數(shù)圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二元一次方程組》(03)(解析版) 題型:解答題

(2005•恩施州)恩施山青水秀,氣候宜人.在世界自然保護區(qū)星斗山,有一種雪白的樹蟋蟀,人們發(fā)現(xiàn)他15秒鐘所叫次數(shù)與當?shù)販囟戎g滿足一次函數(shù)關系.下面是蟋蟀所叫次數(shù)與溫度變化情況對照表:

(1)根據(jù)表中數(shù)據(jù),用含x的代數(shù)式表示y;
(2)在該地最熱的夏天,人們測得這種蟋蟀15秒鐘叫了50次,那么該地當時的最高溫度大約為多少攝氏度?

查看答案和解析>>

科目:初中數(shù)學 來源:2005年湖北省恩施州中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2005•恩施州)路在山腹行是滬蓉西高速公路的顯著特點之一,全線共有隧道37座,共計長達742421.2米.下圖是正在修建的廟埡隧道的截面,截面是由一拋物線和一矩形構成,其行車道CD總寬度為8米,隧道為單行線2車道.
(1)建立恰當?shù)钠矫嬷苯亲鴺讼担⑶蟪鏊淼拦皰佄锞€的解析式;
(2)在隧道拱的兩側距地面3米高處各安裝一盞路燈,在(1)的平面直角坐標系中用坐標表示其中一盞路燈的位置;
(3)為了保證行車安全,要求行駛車輛頂部(設為平頂)與隧道拱在豎直方向上高度之差至少有0.5米.現(xiàn)有一輛汽車,裝載貨物后,其寬度為4米,車載貨物的頂部與路面的距離為2.5米,該車能否通過這個隧道?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年湖北省恩施州中考數(shù)學試卷(大綱卷)(解析版) 題型:選擇題

(2005•恩施州)已知甲、乙兩地相距s千米,汽車從甲地勻速行駛到乙地,如果汽車每小時耗油量為a升,那么從甲地到乙地汽車的總耗油量y(升)與汽車行駛的速度v(千米/小時)的函數(shù)圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞诲€濆畷顐﹀Ψ閿旇姤鐦庡┑鐐差嚟婵敻鎳濇ィ鍐ㄧ厴闁瑰鍋涚粻鐘绘⒑缁嬪尅鏀绘い銊ユ楠炲牓濡歌閸嬫捇妫冨☉娆忔殘閻庤娲栧鍫曞箞閵娿儺娓婚悹鍥紦婢规洟姊绘担铏瑰笡濞撴碍顨婂畷鏉库槈濮樺彉绗夊┑鐐村灦鑿ゆ俊鎻掔墛缁绘盯宕卞Ο鍝勵潔濡炪倕绻掗崰鏍ь潖缂佹ɑ濯撮柤鎭掑劤閵嗗﹪姊洪棃鈺冪Ф缂佺姵鎹囬悰顔跨疀濞戞瑦娅㈤梺璺ㄥ櫐閹凤拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欑粈鍐┿亜閺囧棗娲ら悡姗€鏌熸潏楣冩闁稿鍔欓弻娑樷枎韫囷絾效闂佽鍠楅悷褏妲愰幘瀛樺闁告繂瀚烽埀顒€鐭傞弻娑㈠Ω閵壯冪厽閻庢鍠栭…閿嬩繆閹间礁鐓涢柛灞剧煯缁ㄤ粙姊绘担鍛靛綊寮甸鍌滅煓闁硅揪瀵岄弫鍌炴煥閻曞倹瀚�