【題目】已知二次函數(shù)y=x2+bx+c的圖象與直線y=x+1相交于點A(﹣1,m)和點B(n,5).
(1)求該二次函數(shù)的關(guān)系式;
(2)在給定的平面直角坐標系中,畫出這兩個函數(shù)的大致圖象;
(3)結(jié)合圖象直接寫出x2+bx+c>x+1時x的取值范圍.

【答案】
(1)解:∵二次函數(shù)y=x2+bx+c的圖象與直線y=x+1相交于點A(﹣1,m)和點B(n,5),

∴m﹣1+1=0,n=1=5,即n=4,

∴點A(﹣1,0),點B(4,5),

解得 ,

∴二次函數(shù)的吉祥物為y=x2﹣2x﹣3


(2)解:這兩個函數(shù)圖象如圖所示,


(3)解:由圖象可知,x2+bx+c>x+1時,x<﹣1或x>4
【解析】(1)首先求出A、B兩點坐標,利用待定系數(shù)法即可解決問題.(2)利用描點法畫出函數(shù)圖象即可.(3)根據(jù)圖象二次函數(shù)的圖象在一次函數(shù)的圖象上方,即可寫出自變量的取值范圍.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在長方形ABCD中,AB=10cm,BC=8cm、點PA出發(fā),沿A、B、C、D路線運動,到D停止;點P的速度為每秒1cm,a秒時點P的速度變?yōu)槊棵?/span>bcm,圖②是點P出發(fā)x秒后,APD的面積S1(cm2)與x(秒)的函數(shù)關(guān)系圖象;

(1)根據(jù)圖②中提供的信息,求a、b及圖②中c的值;

(2)設(shè)點P離開點A的路程為y(cm),請寫出動點P改變速度后y與出發(fā)后的運動時間x(秒)的函數(shù)關(guān)系式;

(3)點P出發(fā)后幾秒,APD的面積S1是長方形ABCD面積的?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為坐標原點,四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數(shù)y= 在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F,則△AOF的面積等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,操場上有一根旗桿AH,為測量它的高度,在B和D處各立一根高1.5米的標桿BC、DE,兩桿相距30米,測得視線AC與地面的交點為F,視線AE與地面的交點為G,并且H、B、F、D、G都在同一直線上,測得BF為3米,DG為5米,求旗桿AH的高度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長分別為2和4的兩個全等三角形,開始它們在左邊重疊,大△ABC固定不動,然后把小△A′B′C′自左向右平移,直至移到點B′到C重合時停止,設(shè)小三角形移動的距離為x,兩個三角形的重合部分的面積為y,則y關(guān)于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣(2m+1)+( m2﹣1).
(1)求證:不論m取什么實數(shù),該二次函數(shù)圖象與x軸總有兩個交點;
(2)若該二次函數(shù)圖象經(jīng)過點(2m﹣2,﹣2m﹣1),求該二次函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,操場上有一根旗桿AH,為測量它的高度,在B和D處各立一根高1.5米的標桿BC、DE,兩桿相距30米,測得視線AC與地面的交點為F,視線AE與地面的交點為G,并且H、B、F、D、G都在同一直線上,測得BF為3米,DG為5米,求旗桿AH的高度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黑球6個.
(1)先從袋子中取出m(m>1)個紅球,再從袋子中隨機摸出1個球,若“摸出的球是黑球”為必然事件,求m的值;
(2)先從袋子中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機摸出1個黑球的概率等于 ,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BAD=CBE=ACF,FDE=64°,DEF=43°,求△ABC各內(nèi)角的度數(shù).

查看答案和解析>>

同步練習冊答案