【題目】如圖1,點為直線上一點,過點作射線,使,將一把直角三角尺的直角頂點放在點處,一邊在射線上,另一邊在直線的下方,其中.
(1)將圖1中的三角尺繞點順時針旋轉(zhuǎn)至圖2,使一邊在的內(nèi)部,且恰好平分,求的度數(shù);
(2)將圖1中三角尺繞點按每秒10的速度沿順時針方向旋轉(zhuǎn)一周,旋轉(zhuǎn)過程中,在第 秒時,邊恰好與射線平行;在第 秒時,直線恰好平分銳角.
(3)將圖1中的三角尺繞點順時針旋轉(zhuǎn)至圖3,使在的內(nèi)部,請?zhí)骄?/span>與之間的數(shù)量關(guān)系,并說明理由.
【答案】(1) 150°;(2) 9或27;6或24 ;(3)見解析.
【解析】
(1)根據(jù)角平分線的定義求出∠COM,然后根據(jù)∠CON=∠COM+90°解答;(2)分別分兩種情況根據(jù)平行線的性質(zhì)和旋轉(zhuǎn)的性質(zhì)求出旋轉(zhuǎn)角,然后除以旋轉(zhuǎn)速度即可得解;
(3)用∠BOM和∠NOC表示出∠BON,然后列出方程整理即可得解.
解:(1)∵OM平分∠AOC,
∴∠COM= ∠AOC=60°,
∴∠CON=∠COM+90°=150°;
(2))∵∠AOC=120°,
∴∠BOC=60°,
∵∠OMN=30°,
∴當(dāng)ON在直線AB上時,MN∥OC,
旋轉(zhuǎn)角為90°或270°,
∵每秒順時針旋轉(zhuǎn)10°,
∴時間為9或27,
直線ON恰好平分銳角∠BOC時,
旋轉(zhuǎn)角為60°或 180°+60°=240°,
∵每秒順時針旋轉(zhuǎn)10°,
∴時間為6或24;
故答案為:9或27;6或24.
(3)∵∠MON=90°,∠BOC=60°,
∴∠BON=90°-∠BOM,
∠BON=60°-∠NOC,
∴90°-∠BOM=60°-∠NOC,
∴∠BOM-∠NOC=30°,
故∠BOM與∠NOC之間的數(shù)量關(guān)系為:∠BOM-∠NOC=30°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B(A在B左側(cè))兩點, 一次函數(shù)y=-x+4與坐標(biāo)軸分別交于點C、D,與拋物線交于點M、N,其中點M的橫坐標(biāo)是.
(1)求出點C、D的坐標(biāo);
(2)求拋物線的表達(dá)式以及點A、B的坐標(biāo);
(3)在平面內(nèi)存在動點P(P不與A,B重合),滿足∠APB為直角,動點P到直線CD的距離是否有最小值,如果有,請直接寫出這個最小值的結(jié)果;如果沒有,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=4,AD是BC邊上的中線,將△ABD繞點A旋轉(zhuǎn),使AB與AC重合,連接DE,則線段DE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中,錯誤結(jié)論有( );①三角形三條高(或高的延長線)的交點不在三角形的內(nèi)部,就在三角形的外部;②一個多邊形的邊數(shù)每增加一條,這個多邊形的內(nèi)角和就增加360;③兩條平行直線被第三條直線所截,同旁內(nèi)角的角平分線互相平行;④三角形的一個外角等于任意兩個內(nèi)角的和;⑤在中,若,則為直角三角形;⑥順次延長三角形的三邊,所得的三角形三個外角中銳角最多有一個
A. 6個B. 5個C. 4個D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣﹣x+4,
(1)用配方法確定它的頂點坐標(biāo)、對稱軸;
(2)x取何值時,y隨x增大而減。
(3)x取何值時,拋物線在x軸上方?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,的平分線交于點,交的延長線于點
(1)如圖1,若,則 (直接寫出結(jié)果) .
(2)如圖2,若為的點,連接,求的值;
(3)如圖3,若連接,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.若AE=1,則FM的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明騎自行車上學(xué),開始以正常速度勻速行駛,但行至中途時,自行車出了故障,只好停下來修車,車修好后,因怕耽誤上課,他比修車前加快了速度繼續(xù)勻速行駛,下面是行駛路程s(m)關(guān)于時間t(min)的函數(shù)圖象,那么符合小明行駛情況的大致圖象是()
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù).
(1)滿足何條件時,y隨x的增大而減。
(2)滿足何條件時,圖像經(jīng)過第一、二、四象限;
(3)滿足何條件時,它的圖像與y軸的交點在x軸的上方.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com