)閱讀:數(shù)學中為了幫助解答疑難幾何圖形問題,在原圖基礎之上另外所作的直線、射線或者線段叫輔助線,輔助線在今后的解題中經常用到。

如圖一,AB∥CD,試說明:∠B+∠D=∠BED。

   分析:可以考慮把∠BED變成兩個角的和。過E點引一條直線EF∥AB,則有∠B=∠1,再設法證明∠D=∠2,需證EF∥CD,這可通過已知AB∥CD和EF∥AB得到。

解答:(1)已知:如圖二,AB∥CD,問:∠BED+∠B+∠D=     °。請說明理由。

(2)如圖三,已知:AB∥CD,

請用一個等式寫出∠B,∠E,∠F,∠G,∠D之間的關系:             

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料:
為了在甲、乙兩名學生中選拔一人參加全國數(shù)學競賽,在相同條件下,對他們進行了10次測驗,成績如下:(單位:分)
甲成績(分) 76 84 90 86 81 87 86 82 85 83
乙成績(分) 82 84 85 89 79 80 91 89 74 79
回答下列問題:
(1)甲學生成績的眾數(shù)是
 
(分),乙學生成績的中位數(shù)是
 
(分).
(2)若甲學生成績的平均數(shù)是
.
x
,乙學生成績的平均數(shù)是
.
x
,則
.
x
.
x
的大小關系是:
 

(3)經計算知:S2=13.2,S2=26.36,這表明
 
(用簡明的文字語言表述).
(4)若測驗分數(shù)在85分(含85分)以上為優(yōu)秀,則甲的優(yōu)秀率為
 
;乙的優(yōu)秀率為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

綜合題
閱讀下列材料:
配方法是初中數(shù)學中經常用到的一個重要方法,學好配方法對我們學習數(shù)學有很大的幫助,所謂配方就是將某一個多項式變形為一個完全平方式,變形一定要是恒等的,例如解方程x2-4x+4=0,則(x-2)2=0∴x=2x2-2x+y2+4y+5=0
求x、y.則有(x2-2x+1)+(y2+4y+4)=0∴(x-1)2+(y+2)2=0.解得x=1,y=-2.x2-2x-3=0則有x2-2x+1-1-3=0∴(x-1)2=4.解得x=3或x=-1,根據以上材料解答下列各題:
(1)若a2+4a+4=0.求a的值.
(2)x2-4x+y2+6y+13=0.求(x+y)-2011的值.
(3)若a2-2a-8=0.求a的值.
(4)若a,b,c表示△ABC的三邊,且a2+b2+c2-ac-ab-bc=0,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

綜合題
閱讀下列材料:
配方法是初中數(shù)學中經常用到的一個重要方法,學好配方法對我們學習數(shù)學有很大的幫助,所謂配方就是將某一個多項式變形為一個完全平方式,變形一定要是恒等的,例如解方程x2-4x+4=0,則(x-2)2=0∴x=2x2-2x+y2+4y+5=0
求x、y.則有(x2-2x+1)+(y2+4y+4)=0∴(x-1)2+(y+2)2=0.解得x=1,y=-2.x2-2x-3=0則有x2-2x+1-1-3=0∴(x-1)2=4.解得x=3或x=-1,根據以上材料解答下列各題:
(1)若a2+4a+4=0.求a的值.
(2)x2-4x+y2+6y+13=0.求(x+y)-2011的值.
(3)若a2-2a-8=0.求a的值.
(4)若a,b,c表示△ABC的三邊,且a2+b2+c2-ac-ab-bc=0,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

綜合題
閱讀下列材料:
配方法是初中數(shù)學中經常用到的一個重要方法,學好配方法對我們學習數(shù)學有很大的幫助,所謂配方就是將某一個多項式變形為一個完全平方式,變形一定要是恒等的,例如解方程x2-4x+4=0,則(x-2)2=0∴x=2x2-2x+y2+4y+5=0
求x、y.則有(x2-2x+1)+(y2+4y+4)=0∴(x-1)2+(y+2)2=0.解得x=1,y=-2.x2-2x-3=0則有x2-2x+1-1-3=0∴(x-1)2=4.解得x=3或x=-1,根據以上材料解答下列各題:
(1)若a2+4a+4=0.求a的值.
(2)x2-4x+y2+6y+13=0.求(x+y)-2011的值.
(3)若a2-2a-8=0.求a的值.
(4)若a,b,c表示△ABC的三邊,且a2+b2+c2-ac-ab-bc=0,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案