【題目】如圖,已知△ABC的面積為16,BC=8,現(xiàn)將△ABC沿直線向右平移a(a<8)個(gè)單位到△DEF的位置.
(1)求△ABC的BC邊上的高.
(2)連結(jié)AE、AD,設(shè)AB=5
①求線段DF的長.
②當(dāng)△ADE是等腰三角形時(shí),求a的值.
【答案】(1)4;(2)①;②或5或6
【解析】
(1)根據(jù)三角形的面積公式即可求出結(jié)論;
(2)①作AG⊥BC,垂足為G,根據(jù)勾股定理即可求出BG,再根據(jù)勾股定理即可求出AC,最后根據(jù)平移的性質(zhì)即可求出結(jié)論;
②根據(jù)等腰三角形腰的情況分類討論,根據(jù)平移的性質(zhì)、勾股定理和等腰三角形的性質(zhì)分別求出結(jié)論即可.
解:(1)△ABC的BC邊上的高為16×2÷8=4
(2)①作AG⊥BC,垂足為G,由(1)知AG=4
在Rt△AGB中,AB=5,AG=4
3
在Rt△AGC中,AG=4,GC=BC-BG=5
由平移可得DF=AC=
②若△ADE是等腰三角形,可分以下情況
Ⅰ、當(dāng)AD=AE時(shí),由題可得:AD=BE=a=AE
在Rt△AGE中,EG=a-3
根據(jù)勾股定理可得:
解得:
Ⅱ、當(dāng)AD=DE時(shí),由平移可得DE=AB=5
∴a=AD=DE=5
Ⅲ、當(dāng)DE=AE時(shí),則AB=AE
∵AG⊥BC
∴BE=2BG=6
即a=6
綜上可得:當(dāng)a=或5或6時(shí),△ADE是等腰三角形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,邊長為的等邊三角形的頂點(diǎn)分別在和上,下列結(jié)論:,其中正確的序號(hào)是( )
A.①②④B.①②C.②③④D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列解答過程:如圖甲,AB∥CD,探索∠APC與∠BAP、∠PCD之間的關(guān)系.
解:過點(diǎn)P作PE∥AB.
∵AB∥CD,
∴PE∥AB∥CD(平行于同一條直線的兩條直線互相平行).
∴∠1+∠A=180°(兩直線平行,同旁內(nèi)角互補(bǔ)),
∠2+∠C=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).
∴∠1+∠A+∠2+∠C=360°.
又∵∠APC=∠1+∠2,
∴∠APC+∠A+∠C=360°.
如圖乙和圖丙,AB∥CD,請根據(jù)上述方法分別探索兩圖中∠APC與∠BAP、∠PCD之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】誰更合理?
某種牙膏上部圓的直徑為2.6cm,下部底邊的長為4cm,如圖,現(xiàn)要制作長方體的牙膏盒,牙膏盒底面是正方形,在手工課上,小明、小亮、小麗、小芳制作的牙膏盒的高度都一樣,且高度符合要求.不同的是底面正方形的邊長,他們制作的邊長如下表:
制作者 | 小明 | 小亮 | 小麗 | 小芳 |
正方形的邊長 | 2cm | 2.6cm | 3cm | 3.4cm |
(1)這4位同學(xué)制作的盒子都能裝下這種牙膏嗎?()
(2)若你是牙膏廠的廠長,從節(jié)約材料又方便取放牙膏的角度來看,你認(rèn)為誰的制作更合理?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑作半圓⊙O交AC于點(diǎn)D,點(diǎn)E為BC的中點(diǎn),連接DE.
(1)求證:DE是半圓⊙O的切線;
(2)若∠BAC=30°,DE=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2﹣2x+3的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)點(diǎn)M(m,0)為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)Q作QN⊥x軸于點(diǎn)N,可得矩形PQNM.如圖,點(diǎn)P在點(diǎn)Q左邊,試用含m的式子表示矩形PQNM的周長;
(3)當(dāng)矩形PQNM的周長最大時(shí),m的值是多少?并求出此時(shí)的△AEM的面積;
(4)在(3)的條件下,當(dāng)矩形PMNQ的周長最大時(shí),連接DQ,過拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若FG= DQ,求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,AB =24 cm,射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以3cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以5cm/s的速度運(yùn)動(dòng),設(shè)點(diǎn)E運(yùn)動(dòng)的時(shí)間為t(s).
(1)當(dāng)點(diǎn)F在線段BC上運(yùn)動(dòng)時(shí),CF= cm,當(dāng)點(diǎn)F在線段BC的延長線上運(yùn)動(dòng)時(shí),CF= cm(請用含t的式子表示);
(2)在整個(gè)運(yùn)動(dòng)過程中,當(dāng)以點(diǎn)A,C,E,F為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值;
(3)當(dāng)t = s時(shí),E,F兩點(diǎn)間的距離最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與直線和分別交于點(diǎn)、,且,、分別是和上兩點(diǎn),連接,.
(1)試說明:;
(2)如果,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,鉛球運(yùn)動(dòng)員擲鉛球的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是y=﹣ x2+ x+ ,則該運(yùn)動(dòng)員此次擲鉛球的成績是( )
A.6m
B.12m
C.8m
D.10m
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com