【題目】如圖,在矩形紙片ABCD中,AB=3,BC=9.將矩形紙片折疊,使點B和點D重合.
(1)求ED的長;
(2)求折痕EF的長.
【答案】(1)5;(2)
【解析】
(1)先依據(jù)翻折的性質(zhì)和平行線的性質(zhì)證明三角形DEF為等腰三角形,從而得到ED=DF,設(shè)DE=x,則DF=x,FC=9-x,然后在△DFC中依據(jù)勾股定理列方程求解即可;
(2)過點E做EM垂直于BC,垂足為M.先求得MF的長度,然后依據(jù)勾股定理可求得EF的長.
解:(1)∵四邊形ABCD為矩形,
∴AB=CD=3.
∵AD∥BC,
∴∠BFE=∠DEF.
∵∠BFE=∠EFD,
∴∠EFD=∠DEF,
∴DE=DF.
設(shè)DE=x,則DF=x,FC=9﹣x.
在Rt△DFC中,FC2+DC2=DF2,
∴(9﹣x)2+32=x2.解得x=5.
∴DE=5.
(2)過點E做EM垂直于BC,垂足為M.
根據(jù)(1)可知BF=DF=5,
AE=CF=4,
∵AE=CF=4,BF=DF=5,
∴MF=BF﹣BM=5﹣4=1.
∴Rt△MEF中,EF2=EM2+MF2=32+12=10
∴
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖像與軸交于、兩點,與軸交于點,點是拋物線頂點,點是直線下方的拋物線上一動點.
()這個二次函數(shù)的表達(dá)式為____________.
()設(shè)直線的解析式為,則不等式的解集為___________.
()連結(jié)、,并把沿翻折,得到四邊形,那么是否存在點,使四邊形為菱形?若存在,請求出此時點的坐標(biāo);若不存在,請說明理由.
()當(dāng)四邊形的面積最大時,求出此時點的坐標(biāo)和四邊形的最大面積.
()若把條件“點是直線下方的拋物線上一動點.”改為“點是拋物線上的任一動點”,其它條件不變,當(dāng)以、、、為頂點的四邊形為梯形時,直接寫出點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=8cm,AD=12cm,點P在AD邊上以每秒1cm 的速度從點A向點D運動,點Q在BC邊上,以每秒4cm的速度從點C出發(fā),在CB間往返運動,兩個點同時出發(fā),當(dāng)點P到達(dá)點D時停止(同時點Q也停止),在運動以后,以P、D、Q、B四點組成平行四邊形的次數(shù)有__次.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上、兩點對應(yīng)的有理數(shù)分別為和,點和點分別同時從點和點出發(fā),以每秒個單位長度,每秒個單位長度的速度向數(shù)軸正方向運動,設(shè)運動時間為秒.
(1)當(dāng)時,則、兩點對應(yīng)的有理數(shù)分別是______;_______;
(2)點是數(shù)軸上點左側(cè)一點,其對應(yīng)的數(shù)是,且,求的值;
(3)在點和點出發(fā)的同時,點以每秒個單位長度的速度從點出發(fā),開始向左運動,遇到點后立即返回向右運動,遇到點后立即返回向左運動,與點相遇后再立即返回,如此往返,直到、兩點相遇時,點停止運動,求點運動的路程一共是多少個單位長度?點停止的位置所對應(yīng)的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是( )
A. 12B. 24C. 12D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是我國古代數(shù)學(xué)家楊輝最早發(fā)現(xiàn)的,稱為“楊輝三角”.它的發(fā)現(xiàn)比西方要早五百年左右,由此可見我國古代數(shù)學(xué)的成就是非常值得中華民族自豪的!“楊輝三角”中有許多規(guī)律,如它的每一行的數(shù)字正好對應(yīng)了(a+b)n(n為非負(fù)整數(shù))的展開式中a按次數(shù)從大到小排列的項的系數(shù)。
例如,展開式中的系數(shù)1、2、1恰好對應(yīng)圖中第三行的數(shù)字;
再如,展開式中的系數(shù)1、3、3、1恰好對應(yīng)圖中第四行的數(shù)字。
請認(rèn)真觀察此圖,寫出(a+b)4的展開式,(a+b)4=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是等邊△ABC內(nèi)一點,∠AOB=110°,∠BOC=a.將△BOC繞點C按順時針方向旋轉(zhuǎn)60°得△ADC,連接OD.
(1)求證:△COD是等邊三角形;
(2)當(dāng)a=150°時,試判斷△AOD的形狀,并說明理由;
(3)探究:當(dāng)a為多少度時,△AOD是等腰三角形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com