如圖都是用全等的等邊三角形拼成的一組圖形,(1)中有1個(gè)等腰梯形,(2)中共有4個(gè)等腰梯形,則在(3)中共有
9
9
個(gè)等腰梯形.
分析:觀察圖形可知第一個(gè)圖有1個(gè)等腰梯形,第二個(gè)圖有4=22個(gè),第三個(gè)圖有9=32個(gè).
解答:解:第一個(gè)圖有1個(gè)等腰梯形,
第二個(gè)有4=22個(gè),
第三個(gè)圖形有9=32個(gè).
故答案為9.
點(diǎn)評(píng):本題考查了規(guī)律型:圖形的變化,解題的關(guān)鍵是按照一定的順序依次找到符合條件的等腰梯形,做到不重復(fù)不遺漏.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,有兩種形狀不同的直角三角形紙片各兩塊,其中一種紙片的兩條直角邊長(zhǎng)都為3,另一種紙片的兩條直角邊長(zhǎng)分別為1和3.圖1、圖2、圖3是三張形狀、大小完全相同的方格紙,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1.
(1)請(qǐng)用三種方法(拼出的兩個(gè)圖形只要不全等就認(rèn)為是不同的拼法)將圖中所給四塊直角三角形紙片拼成平行四邊形(非矩形),每種方法要把圖中所給的四塊直角三角形紙片全部用上,互不重疊且不留空隙,并把你所拼得的圖形按實(shí)際大小畫在圖1,圖2,圖3的方格紙上(要求:所畫圖形各頂點(diǎn)必須與方格紙中的小正方形頂點(diǎn)重合;畫圖時(shí),要保留四塊直角三角形紙片的拼接痕跡);
(2)三種方法所拼得的平行四邊形的面積是否是定值?若是定值,請(qǐng)直接寫出這個(gè)定值;若不是定值,請(qǐng)直接寫出三種方法所拼得的平行四邊形的面積各是多少;
(3)三種方法所拼得的平行四邊形的周長(zhǎng)是否是定值?若是定值,請(qǐng)直接寫出這個(gè)定值;若不是定值,請(qǐng)直接寫出三種方法所拼得的平行四邊形的周長(zhǎng)各是多少.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖都是用全等的等邊三角形拼成的一組圖形,(1)中有1個(gè)等腰梯形,(2)中共有4個(gè)等腰梯形,則在(3)中共有______個(gè)等腰梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,有兩種形狀不同的直角三角形紙片各兩塊,其中一種紙片的兩條直角邊長(zhǎng)都為3,另一種紙片的兩條直角邊長(zhǎng)分別為1和3.圖1、圖2、圖3是三張形狀、大小完全相同的方格紙,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1.
(1)請(qǐng)用三種方法(拼出的兩個(gè)圖形只要不全等就認(rèn)為是不同的拼法)將圖中所給四塊直角三角形紙片拼成平行四邊形(非矩形),每種方法要把圖中所給的四塊直角三角形紙片全部用上,互不重疊且不留空隙,并把你所拼得的圖形按實(shí)際大小畫在圖1,圖2,圖3的方格紙上(要求:所畫圖形各頂點(diǎn)必須與方格紙中的小正方形頂點(diǎn)重合;畫圖時(shí),要保留四塊直角三角形紙片的拼接痕跡);
(2)三種方法所拼得的平行四邊形的面積是否是定值?若是定值,請(qǐng)直接寫出這個(gè)定值;若不是定值,請(qǐng)直接寫出三種方法所拼得的平行四邊形的面積各是多少;
(3)三種方法所拼得的平行四邊形的周長(zhǎng)是否是定值?若是定值,請(qǐng)直接寫出這個(gè)定值;若不是定值,請(qǐng)直接寫出三種方法所拼得的平行四邊形的周長(zhǎng)各是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:廣東省期末題 題型:填空題

如下圖,上面各圖都是用全等的等邊三角形拼成的一組圖形。則在第10個(gè)這樣的圖形中共有 (    )個(gè)等腰梯形。

查看答案和解析>>

同步練習(xí)冊(cè)答案