【題目】如圖,在ABCD中,延長(zhǎng)CD到E,使DE=CD,連接BE交AD于點(diǎn)F,交AC于點(diǎn)G.
(1)求證:AF=DF;
(2)若BC=2AB,DE=1,∠ABC=60°,求FG的長(zhǎng).
【答案】
(1)
證明:連接BD、AE,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,
∵DE=CD,
∴AB∥DE,AB=DE,
∴四邊形ABDE是平行四邊形,
∴AF=DF.
(2)
解:在BC上截取BN=AB=1,連接AN,
∵∠ABC=60°,
∴△ANB是等邊三角形,
∴AN=1=BN,∠ANB=∠BAN=60°,
∵BC=2AB=2,
∴CN=1=AN,
∴∠ACN=∠CAN= ×60°=30°,
∴∠BAC=90°,
由勾股定理得:AC= = ,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴△AGB∽△CGE,
∴ ,
∴ = ,
AG= ,
在△BGA中,由勾股定理得:BG= = ,
∵ = ,
∴GE= ,
BE= + =2 ,
∵四邊形ABDE是平行四邊形,
∴BF= BE= ,
∴FG= ﹣ = .
【解析】(1)連接AE、BD、根據(jù)AB∥CD,AB=CD=DE,得出平行四邊形ABDE,即可推出答案;(2)在BC上截取BN=AB=1,連接AN,推出△ANB是等邊三角形,求出CN=1=AN,根據(jù)三角形的內(nèi)角和定理求出∠BAC=90°,由勾股定理求出AC,根據(jù)△AGB∽△CGE,得出 ,求出AG,在△BGA中,由勾股定理求出BG,求出GE、BE,根據(jù)平行四邊形BDEA求出BF,即可求出答案.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解三角形中位線定理的相關(guān)知識(shí),掌握連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三的一半,以及對(duì)平行四邊形的性質(zhì)的理解,了解平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P為⊙O外一點(diǎn),PA、PB為⊙O的切線,A、B為切點(diǎn),AC為⊙O的直徑,PO交于⊙O于點(diǎn)E.
(1)試判斷∠APB與∠BAC的數(shù)量關(guān)系;
(2)若⊙O的半徑為4,P是⊙O外一動(dòng)點(diǎn),是否存在點(diǎn)P,使四邊形PAOB為正方形?若存在,請(qǐng)求出PO的長(zhǎng),并判斷點(diǎn)P的個(gè)數(shù)及其滿足的條件;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩輛摩托車同時(shí)從相距20km的A,B兩地出發(fā),相向而行.圖中l(wèi)1,l2分別表示甲、乙兩輛摩托車到A地的距離s(km)與行駛時(shí)間t(h)的函數(shù)關(guān)系.則下列說(shuō)法錯(cuò)誤的是
A. 乙摩托車的速度較快
B. 經(jīng)過(guò)0.3小時(shí)甲摩托車行駛到A,B兩地的中點(diǎn)
C. 經(jīng)過(guò)0.25小時(shí)兩摩托車相遇
D. 當(dāng)乙摩托車到達(dá)A地時(shí),甲摩托車距離A地km
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=50°,BC=6,以BC為直徑的半圓O與AB、AC分別交于點(diǎn)D、E,則圖中陰影部分面積之和等于(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC,且∠ACB=90°.
(1)請(qǐng)用直尺和圓規(guī)按要求作圖(保留作圖痕跡,不寫(xiě)作法和證明):
①以點(diǎn)A為圓心,BC邊的長(zhǎng)為半徑作⊙A;
②以點(diǎn)B為頂點(diǎn),在AB邊的下方作∠ABD=∠BAC.
(2)請(qǐng)判斷直線BD與⊙A的位置關(guān)系(不必證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】作圖與計(jì)算
(1)已知:.
求作:在圖2中,以OA為一邊,在∠AOB的內(nèi)部作.∠AOC=(要求:直尺和圓規(guī)作圖,不寫(xiě)作法,保留圖痕跡.)
(2)過(guò)點(diǎn)O分別引射線OA、OB、OC,且∠AOB=65°,∠BOC=30°,求∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(5分)已知A,B兩地相距200千米,一輛汽車以每小時(shí)60千米的速度從A地勻速駛往B地,到達(dá)B地后不再行駛,設(shè)汽車行駛的時(shí)間為x小時(shí),汽車與B地的距離為y千米.
(1)求y與x的函數(shù)關(guān)系,并寫(xiě)出自變量x的取值范圍;
(2)當(dāng)汽車行駛了2小時(shí)時(shí),求汽車距B地有多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A,B的坐標(biāo)分別為(-2,3)和(1,3),拋物線y=ax2+bx+c(a<0)的頂點(diǎn)在線段AB上運(yùn)動(dòng)時(shí),形狀保持不變,且與x軸交于C,D兩點(diǎn)(C在D的左側(cè)),給出下列結(jié)論:①c<3;②當(dāng)x<-3時(shí),y隨x的增大而增大;③若點(diǎn)D的橫坐標(biāo)最大值為5,則點(diǎn)C的橫坐標(biāo)最小值為-5;④當(dāng)四邊形ACDB為平行四邊形時(shí),a= .其中正確的是( )
A.②④
B.②③
C.①③④
D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,在在△ABC中,已知∠BAC=900,AB=AC,點(diǎn)D在BC上,且BD=BA,點(diǎn)E在BC的延長(zhǎng)線上,CE=CA,求∠DAE的度數(shù);
(2)如果把(1)中的“AB=AC”條件去掉,其余條件不變,那么∠DAE的度數(shù)改變嗎?為什么?
(3)如果把(1)中的“∠BAC=900”改成“∠BAC>900”其余條件不變,試探究∠DAE與∠BAC的數(shù)量關(guān)系式,試證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com