如圖,在平面直角坐標(biāo)系中,等腰直角的斜邊在軸上,頂點(diǎn)的坐標(biāo)為,為斜邊上的高.拋物線與直線交于點(diǎn),點(diǎn)的橫坐標(biāo)為.點(diǎn)在軸的正半軸上,過點(diǎn)作軸.交射線于點(diǎn).設(shè)點(diǎn)的橫坐標(biāo)為,以為頂點(diǎn)的四邊形的面積為.
(1)求所在直線的解析式;
(2)求的值;
(3)當(dāng)時(shí),求與的函數(shù)關(guān)系式;
(4)如圖,設(shè)直線交射線于點(diǎn),交拋物線于點(diǎn).以為一邊,在的右側(cè)作矩形,其中.直接寫出矩形與重疊部分為軸對(duì)稱圖形時(shí)的取值范圍.
(1);(2);(3)當(dāng)時(shí),;當(dāng)時(shí),S
(4)或或.
【解析】
試題分析:(1)已知了A點(diǎn)的坐標(biāo),即可求出正比例函數(shù)直線OA的解析式;
(2)根據(jù)C點(diǎn)的橫坐標(biāo)以及直線OC的解析式,可確定C點(diǎn)坐標(biāo),將其代入拋物線的解析式中即可求出待定系數(shù)a的值;
(3)已知了A點(diǎn)的坐標(biāo),即可求出OD、AD的長,由于△OAB是等腰直角三角形,即可確定OB的長;欲求四邊形ABDE的面積,需要分成兩種情況考慮:
①0<m<3時(shí),P點(diǎn)位于線段OD上,此時(shí)陰影部分的面積為△AOB、△ODE的面積差;
②m>3時(shí),P點(diǎn)位于D點(diǎn)右側(cè),此時(shí)陰影部分的面積為△OBE、△OAD的面積差;
根據(jù)上述兩種情況陰影部分的面積計(jì)算方法,可求出不同的自變量取值范圍內(nèi),S、m的函數(shù)關(guān)系式;
(4)若矩形RQMN與△AOB重疊部分為軸對(duì)稱圖形,首先要找出其對(duì)稱軸;
①由于直線OA的解析式為y=x,若設(shè)QM與OA的交點(diǎn)為H,那么∠QEH=45°,△QEH是等腰直角三角形;那么當(dāng)四邊形QRNM是正方形時(shí),重合部分是軸對(duì)稱圖形,此時(shí)的對(duì)稱軸為QN所在的直線;可得QR=RN,由此求出m的值;
②以QM、RN的中點(diǎn)所在直線為對(duì)稱軸,此時(shí)AD所在直線與此對(duì)稱軸重合,可得PD=RN=,由OP=OD-PD即可求出m的值;
③當(dāng)P、D重合時(shí),根據(jù)直線OC的解析式y(tǒng)=x知:RD=;此時(shí)R是AD的中點(diǎn),由于RN∥x軸,且RN==DB,所以N點(diǎn)恰好位于AB上,RN是△ABD的中位線,此時(shí)重合部分是等腰直角三角形REN,由于等腰直角三角形是軸對(duì)稱圖形,所以此種情況也符合題意,此時(shí)OP=OD=3,即m=3;
當(dāng)R在AB上時(shí),根據(jù)直線OC的解析式可用m表示出R的縱坐標(biāo),即可得到PR、PB的表達(dá)式,根據(jù)PR=PB即可求出m的值;
根據(jù)上述三種軸對(duì)稱情況所得的m的值,及R在AB上時(shí)m的值,即可求得m的取值范圍.
(1)設(shè)直線OA的解析式為y=kx,
則有:3k=3,k=1;
∴直線的解析式為;
(2)當(dāng)x=6時(shí),y=x=3,
∴C(6,3);
將C(6,3)代入拋物線的解析式中,
得:36a+12=3,解得;
(3)當(dāng)時(shí),如圖①,
=;
當(dāng)時(shí),如圖②,
(4)或或.
考點(diǎn):二次函數(shù)的綜合題
點(diǎn)評(píng):此類問題綜合性強(qiáng),難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com