【題目】如圖,△ABC中,∠BAC=75°,BC=7,△ABC的面積為14,D為 BC邊上一動(dòng)點(diǎn)(不與B,C重合),將△ABD和△ACD分別沿直線AB,AC翻折得到△ABE與△ACF,那么△AEF的面積最小值為___.
【答案】4
【解析】
過E作EG⊥AF,交FA的延長線于G,由折疊可得∠EAG=30°,而當(dāng)AD⊥BC時(shí),AD最短,依據(jù)BC=7,△ABC的面積為14,即可得到當(dāng)AD⊥BC時(shí),AD=4=AE=AF,進(jìn)而得到△AEF的面積最小值為: AF×EG=×4×2=4.
如圖,過E作EG⊥AF,交FA的延長線于G,
由折疊可得,AF=AE=AD,∠BAE=∠BAD,∠DAC=∠FAC,
又∵∠BAC=75°,
∴∠EAF=150°,
∴∠EAG=30°,
∴EG=AE=AD,
當(dāng)AD⊥BC時(shí),AD最短,
∵BC=7,△ABC的面積為14,
∴當(dāng)AD⊥BC時(shí),AD=4=AE=AF,
∴△AEF的面積最小值為:AF×EG=×4×2=4,
故答案為:4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某段河流的兩岸是平行的,數(shù)學(xué)興趣小組在老師帶領(lǐng)下不用涉水過河就測得河的寬度,他們是這樣做的:
①在河流的一側(cè)岸邊B點(diǎn),選對岸正對的一棵樹A;
②沿河岸直走20米有一樹C,繼續(xù)前行20米到達(dá)D處;
③從D處沿與河岸垂直的方向行走,當(dāng)?shù)竭_(dá)A樹正好被C樹遮擋住的E處停止行走;
④測得DE的長為5米.
求河流的寬度是多少?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,矩形OABC的頂點(diǎn)B坐標(biāo)為(12,5),點(diǎn)D在 CB邊上從點(diǎn)C運(yùn)動(dòng)到點(diǎn)B,以AD為邊作正方形ADEF,連BE、BF,在點(diǎn)D運(yùn)動(dòng)過程中,請?zhí)骄恳韵聠栴}:
(1)△ABF的面積是否改變,如果不變,求出該定值;如果改變,請說明理由;
(2)若△BEF為等腰三角形,求此時(shí)正方形ADEF的邊長;
(3)設(shè)E(x,y),直接寫出y關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系內(nèi)如圖1擺放,A、C兩點(diǎn)的橫坐標(biāo)都是5,BC∥x軸.已知B點(diǎn)坐標(biāo)為(-3,m),AB交y軸于點(diǎn)D,且AC=BC.
(1) 填空:BC=_____;△ABC的面積為______;用m表示點(diǎn)A的坐標(biāo)為______.
(2) 射線BO交直線AC于點(diǎn)Q,若△ABQ的面積為16,試求m的值
(3) 如圖2,點(diǎn)D在y軸負(fù)半軸上,∠BAC的三等分線AP與∠BOD的角平分線OP交于點(diǎn)P,其中∠BAC=3∠BAP=45°.若∠P>2∠B,試求∠BOD的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=90°,點(diǎn)D在射線BC上(與B、C兩點(diǎn)不重合),以AD為邊作正方形ADEF,使點(diǎn)E與點(diǎn)B在直線AD的異側(cè),射線BA與直線CF相交于點(diǎn)G.
(1)若點(diǎn)D在線段BC上,如圖(1),判斷:線段BC與線段CG的數(shù)量關(guān)系: ,位置關(guān)系: .
(2)如圖(2),①若點(diǎn)D在線段BC的延長線上,(1)中判斷線段BC與線段CG的數(shù)量關(guān)系與位置關(guān)系是否仍然成立,并說明理由;
②當(dāng)G為CF中點(diǎn),連接GE,若AB=,求線段GE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生的學(xué)業(yè)負(fù)擔(dān)過重會(huì)嚴(yán)重影響學(xué)生對待學(xué)習(xí)的態(tài)度.為此我市教育部門對部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求出圖②中C級所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請你估計(jì)我市近8000名八年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級和B級)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線射線,。是射線上一動(dòng)點(diǎn),過點(diǎn)作交射線于點(diǎn),連結(jié)。作,交直線于點(diǎn),平分。
(1)若點(diǎn)都在點(diǎn)的右側(cè)。
①求的度數(shù);
②若,求的度數(shù)。
(2)在點(diǎn)的運(yùn)動(dòng)過程中,是否存在這樣的情形,使,若存在,求出的度數(shù);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新華文具用品店最近購進(jìn)了一批鋼筆,進(jìn)價(jià)為每支6元,為了合理定價(jià),在銷售前4天試行機(jī)動(dòng)價(jià)格,賣出時(shí)每支以10元為標(biāo)準(zhǔn),超過10元的部分記為正,不足10元的部分記為負(fù)。文具店記錄了這四天該鋼筆的售價(jià)情況和售出情況,如下表所示:
第1天 | 第2天 | 第3天 | 第4天 | |
每支價(jià)格相對標(biāo)準(zhǔn)價(jià)格(元) | +1 | 0 | -1 | -2 |
售出支數(shù)(支) | 12 | 15 | 32 | 33 |
(1)填空:這四天中賺錢最多的是第______天,這天賺了______元錢;
(2)求新華文具用品店這四天出售這種鋼筆一共賺了多少錢;
(3)新華文具用品店準(zhǔn)備用這四天賺的錢全部購進(jìn)這種鋼筆,進(jìn)價(jià)仍為每支6元為了促銷這種鋼筆,每只鋼筆的售價(jià)在10元的基礎(chǔ)上打九折,本次購進(jìn)的這種鋼筆全部售出后共賺了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC、BD相交于點(diǎn)O.下列條件不能判定四邊形ABCD為平行四邊形的是( )
A. AB∥CD,AD∥BCB. OA=OC,OB=OD
C. AB=CD,AD=BCD. AB∥CD,AD=BC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com