【題目】(1)已知∠AOB是直角,OM平分∠AOC,ON平分∠BOC,求∠MON與∠AOB的關(guān)系.

(2)如果(1)中,改變∠AOB的大小,其他條件不變,求∠MON與∠AOB的關(guān)系.

(3)你從(1),(2)的結(jié)果中能發(fā)現(xiàn)什么規(guī)律?

【答案】(1)∠MON=∠AOB;(2)∠MON=∠AOB;(3)∠MON總等于∠AOB的一半

【解析】

試題(1)根據(jù)題意,易得∠MOC=∠AOC,∠NOC=∠BOC進而結(jié)合∠MON=∠MOC-∠NOC的關(guān)系,易得答案;

(2)由(1)的結(jié)論,易得改變∠AOB的大小,其他條件不變,總有∠MON=∠AOB的關(guān)系,即可得答案;

(3)分析(1)(2)的結(jié)論,易得答案.

試題解析:(1)∵OM平分∠AOC,ON平分∠BOC,

∴∠MOC=∠AOC,∠NOC=∠BOC,

∴∠MON=∠MOC-∠NOC=∠AOC-∠BOC=∠AOB==45°,

∴∠MON=∠AOB;

(2)改變∠AOB的大小,其他條件不變,總有∠MON=∠AOB;理由如下:

∵OM平分∠AOC,ON平分∠BOC,

∴∠MOC= ∠AOC,∠NOC= ∠BOC,

∴∠MON=∠MOC-∠NOC= ∠AOC- ∠BOC= ∠AOB;

(3)由(1)(2)的結(jié)果,可得出結(jié)論:∠MON的大小總等于∠AOB的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板按如圖放置,則下列結(jié)論

①如果∠2=30°,則有ACDE;

②∠BAE+CAD =180°;

③如果BCAD,則有∠2=45°;

④如果∠CAD=150°,必有∠4=C;

正確的有( )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩位同學(xué)將一個二次三項式因式分解,一位同學(xué)因看錯了一次項系數(shù)而分解成2,另一位同學(xué)因看錯了常數(shù)項而分解成2,請將原多項式因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生課余活動情況,某校對參加繪畫、書法、舞蹈、樂器這四個課外興趣小組的人員分布情況進行抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下面的問題:

(1)此次共調(diào)查了多少名同學(xué)?

(2)將條形圖補充完整,并計算扇形統(tǒng)計圖中書法部分的圓心角的度數(shù);

(3)如果該校共有1000名學(xué)生參加這4個課外興趣小組,而每個教師最多只能輔導(dǎo)本組的20名學(xué)生,估計每個興趣小組至少需要準(zhǔn)備多少名教師

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)對全校學(xué)生進行文明禮儀知識測試,為了解測試結(jié)果,隨機抽取部分學(xué)生的成績進行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如圖兩幅統(tǒng)計圖(不完整).

請你根據(jù)圖中所給的信息解答下列問題:

(1)這次測試,一共抽取了名學(xué)生;

(2)請將以上兩幅統(tǒng)計圖補充完整;(注:扇形圖補百分比,條形圖補優(yōu)秀人數(shù)與高度);

(3)若一般優(yōu)秀均被視為達(dá)標(biāo)成績,該校學(xué)生有1200人,請你估計此次測試中,全校達(dá)標(biāo)的學(xué)生有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖菱形ABCD,D=135°,AD=6,CE=P是線段AC上一點,點F是線段AB上一動點,則PE+PF的最小值是( 。

A. 3 B. 6 C. 2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC中,∠C=90°,AB的垂直平分線MNBC于點D.

(1)如果∠CAD=20°,求∠B的度數(shù);

(2)如果∠CAB=50°,求∠CAD的度數(shù);

(3)如果∠CAD:DAB=1:2,求∠CAB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x、y的方程組實數(shù)m是常數(shù)

1若x+y=1,求實數(shù)m的值;

2若-1≤x-y≤5,求m的取值范圍;

32的條件下,化簡:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)當(dāng)時,求兩個代數(shù)式的值;

(2)當(dāng)時,再求以上兩個代數(shù)式的值;

(3)你能從上面的計算結(jié)果中,發(fā)現(xiàn)上面有什么結(jié)論?

結(jié)論是:

查看答案和解析>>

同步練習(xí)冊答案