如圖,已知拋物線y=ax2+bx-2(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),直線BD交拋物線于點(diǎn)D,并且D(2,3),tan∠DBA=
(1)求拋物線的解析式;
(2)已知點(diǎn)M為拋物線上一動(dòng)點(diǎn),且在第三象限,順次連接點(diǎn)B、M、C、A,求四邊形BMCA面積的最大值;
(3)在(2)中四邊形BMCA面積最大的條件下,過點(diǎn)M作直線平行于y軸,在這條直線上是否存在一個(gè)以Q點(diǎn)為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】分析:(1)如答圖1所示,利用已知條件求出點(diǎn)B的坐標(biāo),然后用待定系數(shù)法求出拋物線的解析式;
(2)如答圖1所示,首先求出四邊形BMCA面積的表達(dá)式,然后利用二次函數(shù)的性質(zhì)求出其最大值;
(3)本題利用切線的性質(zhì)、相似三角形與勾股定理求解.如答圖2所示,首先求出直線AC與直線x=2的交點(diǎn)F的坐標(biāo),從而確定了Rt△AGF的各個(gè)邊長(zhǎng);然后證明Rt△AGF∽R(shí)t△QEF,利用相似線段比例關(guān)系列出方程,求出點(diǎn)Q的坐標(biāo).
解答:解:(1)如答圖1所示,過點(diǎn)D作DE⊥x軸于點(diǎn)E,則DE=3,OE=2.
∵tan∠DBA==
∴BE=6,
∴OB=BE-OE=4,
∴B(-4,0).
∵點(diǎn)B(-4,0)、D(2,3)在拋物線y=ax2+bx-2(a≠0)上,
,
解得,
∴拋物線的解析式為:y=x2+x-2.

(2)拋物線的解析式為:y=x2+x-2,
令x=0,得y=-2,∴C(0,-2),
令y=0,得x=-4或1,∴A(1,0).
設(shè)點(diǎn)M坐標(biāo)為(m,n)(m<0,n<0),
如答圖1所示,過點(diǎn)M作MF⊥x軸于點(diǎn)F,則MF=-n,OF=-m,BF=4+m.
S四邊形BMCA=S△BMF+S梯形MFOC+S△AOC
=BF•MF+(MF+OC)•OF+OA•OC
=(4+m)×(-n)+(-n+2)×(-m)+×1×2
=-2n-m+1
∵點(diǎn)M(m,n)在拋物線y=x2+x-2上,
∴n=m2+m-2,代入上式得:
S四邊形BMCA=-m2-4m+5=-(m+2)2+9,
∴當(dāng)m=-2時(shí),四邊形BMCA面積有最大值,最大值為9.

(3)假設(shè)存在這樣的⊙Q.
如答圖2所示,設(shè)直線x=-2與x軸交于點(diǎn)G,與直線AC交于點(diǎn)F.
設(shè)直線AC的解析式為y=kx+b,將A(1,0)、C(0,-2)代入得:
,
解得:k=2,b=-2,
∴直線AC解析式為:y=2x-2,
令x=-2,得y=-6,∴F(-2,-6),GF=6.
在Rt△AGF中,由勾股定理得:AF===3
設(shè)Q(-2,n),則在Rt△AGF中,由勾股定理得:OQ==
設(shè)⊙Q與直線AC相切于點(diǎn)E,則QE=OQ=
在Rt△AGF與Rt△QEF中,
∵∠AGF=∠QEF=90°,∠AFG=∠QFE,
∴Rt△AGF∽R(shí)t△QEF,
,即,
化簡(jiǎn)得:n2-3n-4=0,解得n=4或n=-1.
∴存在一個(gè)以Q點(diǎn)為圓心,OQ為半徑且與直線AC相切的圓,點(diǎn)Q的坐標(biāo)為(-2,4)或(-2,-1).
點(diǎn)評(píng):本題是中考?jí)狠S題,綜合考查了二次函數(shù)的圖象與性質(zhì)、一次函數(shù)的圖象與性質(zhì)、待定系數(shù)法、相似三角形、勾股定理、圓的切線性質(zhì)、解直角三角形、圖形面積計(jì)算等重要知識(shí)點(diǎn),涉及考點(diǎn)眾多,有一定的難度.第(2)問面積最大值的問題,利用二次函數(shù)的最值解決;第(3)問為存在型問題,首先假設(shè)存在,然后利用已知條件,求出符合條件的點(diǎn)Q坐標(biāo).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點(diǎn)P,使△PAB的面積等于△ABC的面積,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
(4)點(diǎn)Q是直線BC上的一個(gè)動(dòng)點(diǎn),若△QOB為等腰三角形,請(qǐng)寫出此時(shí)點(diǎn)Q的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對(duì)稱軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽(yáng))如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點(diǎn),對(duì)稱軸是x=-1.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線段OA上運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從O點(diǎn)出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度在線段OB上運(yùn)動(dòng),過點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)點(diǎn)P是拋物線對(duì)稱軸上一點(diǎn),若△PAB∽△OBC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)是(-1,-4),且與x軸交于A、B(1,0)兩點(diǎn),交y軸于點(diǎn)C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時(shí),y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點(diǎn),且y1>y2,求實(shí)數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點(diǎn)M、交拋物線于點(diǎn)N,求線段MN的長(zhǎng)度的最大值;
(4)若以拋物線上的點(diǎn)P為圓心作圓與x軸相切時(shí),正好也與y軸相切,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案