【題目】如圖,在平面直角坐標(biāo)系中,菱形OBCD的邊OB在x軸正半軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過該菱形對角線的交點(diǎn)A,且與邊BC交于點(diǎn)F.若點(diǎn)D的坐標(biāo)為(6,8),則點(diǎn)F的坐標(biāo)是 .
【答案】(12,).
【解析】
首先過點(diǎn)D作DM⊥x軸于點(diǎn)M,過點(diǎn)F作FE⊥x于點(diǎn)E,由點(diǎn)D的坐標(biāo)為(6,8),可求得菱形OBCD的邊長,又由點(diǎn)A是BD的中點(diǎn),求得點(diǎn)A的坐標(biāo),利用待定系數(shù)法即可求得反比例函數(shù)y=(x>0)的解析式,然后由tan∠FBE=tan∠DOM=,可設(shè)EF=4a,BE=3a,則點(diǎn)F的坐標(biāo)為:(10+3a,4a),即可得方程4a(10+3a)=32,繼而求得a的值,則可求得答案.
試題過點(diǎn)D作DM⊥x軸于點(diǎn)M,過點(diǎn)F作FE⊥x于點(diǎn)E,
∵點(diǎn)D的坐標(biāo)為(6,8),
∴OD==10,
∵四邊形OBCD是菱形,
∴OB=OD=10,
∴點(diǎn)B的坐標(biāo)為:(10,0),
∵AB=AD,即A是BD的中點(diǎn),
∴點(diǎn)A的坐標(biāo)為:(8,4),
∵點(diǎn)A在反比例函數(shù)y=上,
∴k=xy=8×4=32,
∵OD∥BC,
∴∠DOM=∠FBE,
∴tan∠FBE=tan∠DOM=,
設(shè)EF=4a,BE=3a,
則點(diǎn)F的坐標(biāo)為:(10+3a,4a),
∵點(diǎn)F在反比例函數(shù)y=上,
∴4a(10+3a)=32,
即3a2+10a﹣8=0,
解得:a1=,a2=﹣4(舍去),
∴點(diǎn)F的坐標(biāo)為:(12,).
故答案為(12,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=8,AC=5,BC=7,點(diǎn)D在AB上一動點(diǎn),線段CD繞點(diǎn)C逆時針旋轉(zhuǎn)60°得到線段CE,AE的最小值為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國青少年發(fā)展基金會為某地“希望小學(xué)”捐贈物資,其中文具和食品共320件,文具比食品多80件.
(1)求文具和食品各多少件;
(2)現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛,一次性將這批文具和食品全部運(yùn)往該地.已知甲種貨車最多可裝文具40件和食品10件,乙種貨車最多可裝文具和食品各20件.則中國青少年發(fā)展基金會安排甲、乙兩種貨車時有幾種方案?請你幫助設(shè)計(jì)出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校數(shù)學(xué)興趣小組的同學(xué)測量一架無人飛機(jī)P的高度,如圖,A,B兩個觀測點(diǎn)相距,在A處測得P在北偏東71°方向上,同時在B處測得P在北偏東35°方向上.求無人飛機(jī)P離地面的高度.(結(jié)果精確到1米,參考數(shù)據(jù):,,sin71°≈0.95,tan71°≈2.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為做好防汛工作,防汛指揮部決定對某水庫的水壩進(jìn)行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來的高度BC.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AC為對角線,過點(diǎn)B作BF⊥AC于點(diǎn)F,延長BF交AD于點(diǎn)E,交CD的延長線于點(diǎn)G.
(1)求證:△ABF∽△EGD;
(2)若CD=5,DG=3,求tan∠GBC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某經(jīng)銷商銷售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)為10元/千克,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于18元/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)之間的函數(shù)關(guān)系如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求每天的銷售利潤W(元)與銷售價(jià)x(元/千克)之間的函數(shù)關(guān)系式.當(dāng)銷售價(jià)為多少時,每天的銷售利潤最大?最大利潤是多少?
(3)該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價(jià)應(yīng)定為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),下面給出特征數(shù)為[2m,1﹣m,﹣1﹣m]的函數(shù)的一些結(jié)論,其中不正確的是( 。
A. 當(dāng)m=﹣3時,函數(shù)圖象的頂點(diǎn)坐標(biāo)是(,)
B. 當(dāng)m>0時,函數(shù)圖象截x軸所得的線段長度大于
C. 當(dāng)m≠0時,函數(shù)圖象經(jīng)過同一個點(diǎn)
D. 當(dāng)m<0時,函數(shù)在x>時,y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(-3,0),對稱軸為直線x=-1,給出四個結(jié)論:①b2>4ac;②2a+b=0;③a+b+c>0;④若點(diǎn)B(-,y1),C(-,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2.其中正確結(jié)論是___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com