【題目】如圖,在平面直角坐標系xOy中,△ABC的三個頂點坐標分別為A1,1),B40),C44).

1)按下列要求作圖:

①將△ABC向左平移4個單位,得到△A1B1C1;

②將△A1B1C1繞點B1逆時針旋轉(zhuǎn)90°,得到△A2B2C2

2)求點C1在旋轉(zhuǎn)過程中所經(jīng)過的路徑長.

【答案】1)①見解析;②見解析;(2

【解析】

1)①利用點平移的坐標規(guī)律,分別畫出點A、B、C的對應點A1B1、C1的坐標,然后描點可得△A1B1C1;

②利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì),分別畫出點A1、B1C1的對應點A2、B2C2即可;

2)根據(jù)弧長公式計算.

1)①如圖,△A1B1C1為所作;

②如圖,△A2B2C2為所作;

2)點C1在旋轉(zhuǎn)過程中所經(jīng)過的路徑長=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,點E上的一點,∠DBC=∠BED

1)求證:BC⊙O的切線;

2)已知AD=3CD=2,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=,∠B=120°,點EAD邊上的一個動點(不與A,D重合),EF∥ABBC于點F,點GCD上,DG=DE.若△EFG是等腰三角形,則DE的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=x2+bx+c的圖象過點B(0,1)和C(4,3)兩點,與x軸交于點D、點E,過點B和點C的直線與x軸交于點A.

(1)求二次函數(shù)的解析式;

(2)在x軸上有一動點P,隨著點P的移動,存在點P使PBC是直角三角形,請你求出點P的坐標;

(3)若動點P從A點出發(fā),在x軸上沿x軸正方向以每秒2個單位的速度運動,同時動點Q也從A點出發(fā),以每秒a個單位的速度沿射線AC運動,是否存在以A、P、Q為頂點的三角形與ABD相似?若存在,直接寫出a的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知二次函數(shù)經(jīng)過點B3,0),C0,3),D4-5

1求拋物線的解析式;

2ABC的面積;

3P是拋物線上一點,SABP=SABC這樣的點P有幾個請直接寫出它們的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某茶農(nóng)要對1號、2號、3號、4號四個品種共500株茶樹幼苗進行成活實驗,從中選出成活率高的品種進行推廣,通過實驗得知,3號茶樹幼苗成活率為89.6%,把實驗數(shù)據(jù)繪制成圖1和圖2所示的兩幅不完整的統(tǒng)計圖.

(1)實驗所用的2號茶樹幼苗的數(shù)量是   株;

(2)求出3號茶樹幼苗的成活數(shù),并補全統(tǒng)計圖2;

(3)該茶農(nóng)要從這四種茶樹中選擇兩個品種進行推廣,請用列表或畫樹狀圖的方法求出1號品種被選中的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線型拱橋,當拱頂離水面2m時,水面寬4m,水面下降2m,水面寬度增加______m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+c經(jīng)過A1,0)、B40)、C0,3)三點.

1)求該拋物線的解析式;

2)如圖,在拋物線的對稱軸上是否存在點P,使得四邊形PAOC的周長最小?若存在,求出四邊形PAOC周長的最小值;若不存在,請說明理由.

3)在(2)的條件下,點Q是線段OB上一動點,當△BPQ與△BAC相似時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B在線段AC上,點EBD上,∠ABD=∠DBCABBD,BEBC,MN分別是AE,CD的中點,連接MN,請判斷△MBN的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案