將一個(gè)矩形紙片ABCD沿AD和BC的中點(diǎn)的連線對(duì)折,要使矩形AEFB與原矩形相似,則原矩形的長(zhǎng)和寬的比應(yīng)為( )
A.2:1
B.:1
C.:1
D.1:1
【答案】分析:設(shè)矩形ABCD的長(zhǎng)AD=x,寬AB=y,根據(jù)相似多邊形對(duì)應(yīng)邊的比相等,即可求得.
解答:解:設(shè)矩形ABCD的長(zhǎng)AD=x,寬AB=y,則DM=AD=x.
又矩形DMNC與矩形ABCD相似.
=,即=
即y2=x2
∴x:y=:1.
故選C.
點(diǎn)評(píng):本題主要考查了相似多邊形的對(duì)應(yīng)邊的比相等,注意分清對(duì)應(yīng)邊是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、用剪刀將形狀如圖1所示的矩形紙片ABC沿著直線CM剪成兩部分,其中M為AD的中點(diǎn),利用旋轉(zhuǎn)、平移、軸對(duì)稱等變換可以拼成一些新圖形,例如圖2中的Rt△BCE就是拼成的一個(gè)圖形.
(1)用這兩部分紙片除了可以拼成圖2外,還可以拼成一些四邊形,請(qǐng)你試一試,把拼好的四邊形分別畫在圖3、圖4的虛框內(nèi).
(2)由(1)可知直角三角形可以一刀切后拼成梯形,那么任一三角形(不等邊)能否一刀切后拼成梯形,如圖5,請(qǐng)你試一試.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•新區(qū)二模)在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對(duì)稱)變換和平移變換.一次數(shù)學(xué)活動(dòng)課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動(dòng).
(1)第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點(diǎn)O,Rt△ADC可以由Rt△ABC經(jīng)過(guò)一種變換得到,請(qǐng)你寫出這種變換的過(guò)程
將△ABC繞點(diǎn)O旋轉(zhuǎn)180°后可得到△ADC
將△ABC繞點(diǎn)O旋轉(zhuǎn)180°后可得到△ADC


(2)第二小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對(duì)折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B′處(如圖2-2),這樣能得到∠B′GC的大小,你知道∠B′GC的大小是多少嗎?請(qǐng)寫出求解過(guò)程.
(3)第三小組的同學(xué),在一個(gè)矩形紙片上按照?qǐng)D3-1的方式剪下△ABC,其中BA=BC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動(dòng)AC的長(zhǎng)度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,AC長(zhǎng)為a,現(xiàn)以AD、AF和AH為三邊構(gòu)成一個(gè)新三角形,已知這個(gè)新三角形面積小于15
15
,請(qǐng)你幫助該小組求出a可能的最大整數(shù)值.

(4)探究活動(dòng)結(jié)束后,老師給大家留下了一道探究題:
如圖4-1,已知AA′=BB′=CC′=2,∠AOB′=∠BOC′=∠COA′=60°,請(qǐng)利用圖形變換探究S△AOB′+S△BOC′+S△COA′
3
的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對(duì)稱)變換和平移變換.一次數(shù)學(xué)活動(dòng)課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動(dòng).

(1)第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,ACBD相交于點(diǎn)O,Rt△ADC可以由Rt△ABC經(jīng)過(guò)一種變換得到,請(qǐng)你寫出這種變換的過(guò)程  ▲ 

(2)第二小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對(duì)折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B'處(如圖2-2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請(qǐng)寫出求解過(guò)程.

(3)第三小組的同學(xué),在一個(gè)矩形紙片上按照?qǐng)D3-1的方式剪下△ABC,其中BABC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動(dòng)AC的長(zhǎng)度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,判斷以ADAFAH為三邊能否構(gòu)成三角形?若能構(gòu)成,請(qǐng)判斷這個(gè)三角形的形狀,若不能構(gòu)成,請(qǐng)說(shuō)明理由.

(4)探究活動(dòng)結(jié)束后,老師給大家留下了一道探究題:如圖4-1,已知AA'BB'CC'=4,∠AOB'=∠BOC'=∠COA'=60°,請(qǐng)利用圖形變換探究SAOB'+SBOC'+SCOA'的大小關(guān)系.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對(duì)稱)變換和平移變換.一次數(shù)學(xué)活動(dòng)課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動(dòng).

(1)第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點(diǎn)O,Rt△ADC可以由Rt△ABC經(jīng)過(guò)一種變換得到,請(qǐng)你寫出這種變換的過(guò)程 ▲ 
(2)第二小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對(duì)折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B'處(如圖2-2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請(qǐng)寫出求解過(guò)程.

(3)第三小組的同學(xué),在一個(gè)矩形紙片上按照?qǐng)D3-1的方式剪下△ABC,其中BABC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動(dòng)AC的長(zhǎng)度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,判斷以AD、AFAH為三邊能否構(gòu)成三角形?若能構(gòu)成,請(qǐng)判斷這個(gè)三角形的形狀,若不能構(gòu)成,請(qǐng)說(shuō)明理由.

(4)探究活動(dòng)結(jié)束后,老師給大家留下了一道探究題:如圖4-1,已知AA'BB'CC'=4,∠AOB'=∠BOC'=∠COA'=60°,請(qǐng)利用圖形變換探究SAOB'+SBOC'+SCOA'的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆江蘇無(wú)錫濱湖中學(xué)九年級(jí)中考二模數(shù)學(xué)試卷(帶解析) 題型:解答題

在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對(duì)稱)變換和平移變換.一次數(shù)學(xué)活動(dòng)課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動(dòng).


【小題1】第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點(diǎn)O,Rt△ADC可以由Rt△ABC經(jīng)過(guò)一種變換得到,請(qǐng)你寫出這種變換的過(guò)程是                      
【小題2】第二小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對(duì)折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B'處(如圖2-2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請(qǐng)寫出求解過(guò)程.
【小題3】第三小組的同學(xué),在一個(gè)矩形紙片上按照?qǐng)D3-1的方式剪下△ABC,其中BA=BC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動(dòng)AC的長(zhǎng)度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,AC長(zhǎng)為a,現(xiàn)以AD、AF和AH為三邊構(gòu)成一個(gè)新三角形,已知這個(gè)新三角形面積小于15,請(qǐng)你幫助該小組求出a可能的最大整數(shù)值.

【小題4】探究活動(dòng)結(jié)束后,老師給大家留下了一道探究題:
如圖4-1,已知AA'=BB'=CC'=2,∠AOB'=∠BOC'=∠COA'=60°,請(qǐng)利用圖形變換探究SAOB'+SBOC'+SCOA'與的大小關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案