【題目】在綜合與實踐課上,老師組織同學們以三角形紙片的旋轉(zhuǎn)為主題開展數(shù)學活動.如圖1,現(xiàn)有矩形紙片ABCD,AB8cm,AD6cm.連接BD,將矩形ABCD沿BD剪開,得到△ABD和△BCE.保持△ABD位置不變,將△BCE從圖1的位置開始,繞點B按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角為α0°≤α360°).在△BCE旋轉(zhuǎn)過程中,邊CE與邊AB交于點F

1)如圖2,將圖1中的△BCE旋轉(zhuǎn)到點C落在邊BD上時,CF=

2)繼續(xù)旋轉(zhuǎn)△BCE,當點E落在DA延長線上時,求出CF的長;

3)在△BCE旋轉(zhuǎn)過程中,連接AE,AC,當ACAE時,直接寫出此時α的度數(shù)及△AEC的面積.

【答案】1;(2CF=;(360° , 300°

【解析】

1)利用即可得,代入計算即可;

2)易證EF=FB,再在RtBCF中利用勾股定理計算即可求出CF;

(3)分E在C的左右兩邊兩種情況討論。E在C的左邊時,設EC的中點為G,連接AG,過點AAHBC于點H.解直角三角形求出AG即可解決問題;E在C的右邊時,取CE的中點G,連接AG,作BHAGH.求出AG即可解決問題.

1)∵∠CBF =CEB

AB=EC=8,AD=BC=6

2)∵BE=BD, BADE

∴∠DBA=EBA

DBA =CEB

EBA=CEB

EF=FB

CF=x,則在RtBCF中,

8x2=62+ x2,

解得x=

CF=

3E在C左邊時,如圖3中,設EC的中點為G,連接AG,過點AAHBC于點H

ACAE,EGGC

AGEC,

∵∠GCH180°﹣∠ECB180°﹣90°=90°,

∴∠AGC=∠GCH=∠AHC90°,∴四邊形AGCH是矩形,

GCAHEC84

RtABH中,BH4,

此時

=30°

α=90-=60°

AGCHBHBC46

SAECECAG×8×(46)=(1624cm2

E在C右邊時,如圖4所示,取CE的中點G,連接AG,作BHAGH

同法可得:GHBC6,AH4,

AGAH+GH4+6,

SAECECAG×8×(4+6)=(16+24cm2

此時

=60°

α=360-=30°

綜上所述α=60° 時,SAEC α=300° 時,SAEC

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸的負半軸交于點,與軸交于點,連結(jié),點C(6,)在拋物線上,直線軸交于點

(1)的值及直線的函數(shù)表達式;

(2)軸正半軸上,點軸正半軸上,連結(jié)與直線交于點,連結(jié)并延長交于點,若的中點.

①求證:;

②設點的橫坐標為,求的長(用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電器商場銷售每臺進價分別為200元、170元的A、B兩種型號的電風扇,下表是該型號電風扇近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

5

1800

第二周

4

10

3100

A、B兩種型號的電風扇的銷售單價;

若該商場準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,假設售價不變,那么商場應采用哪種采購方案,才能使得當銷售完這些風扇后,商場獲利最多?最多可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,小明用一張邊長為的正三角形硬紙板設計一個無蓋的正三棱柱糖果盒,從三個角處分別剪去一個形狀大小相同的四邊形,其一邊長記為,再折成如圖2所示的無蓋糖果盒,它的容積記為

1關于的函數(shù)關系式是__________,自變量的取值范圍是__________

2)為探究的變化規(guī)律,小明類比二次函數(shù)進行了如下探究:

①列表:請你補充表格中的數(shù)據(jù):

0

05

1

15

2

25

3

0

3125

________

3375

________

0625

0

②描點:請你把上表中各組對應值作為點的坐標,在平面直角坐標系中描出相應的點;

③連線:請你用光滑的曲線順次連接各點.

3)利用函數(shù)圖象解決:

①該糖果盒的最大容積是__________;

②若該糖果盒的容積超過,請估計糖果盒的底邊長的取值范圍.(保留一位小數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解本校九年級學生期末數(shù)學考試情況,小亮在九年級隨機抽取了一部分學生的期末數(shù)學成績?yōu)闃颖,分?/span>)、)、)、)四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下統(tǒng)計圖表,請你根據(jù)統(tǒng)計圖解答以下問題:

其中組的期末數(shù)學成績?nèi)缦?/span>

1)請補全條形統(tǒng)計圖;

2)這部分學生的期末數(shù)學成績的中位數(shù)是 ,組的期末數(shù)學成績的眾數(shù)是 ;

3)這個學校九年級共有學生人,若分數(shù)為()以上為優(yōu)秀,請估計這次九年級學生期末數(shù)學考試成績?yōu)閮?yōu)秀的學生人數(shù)大約有多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形中,點上,連接,上一點,

(1)求證:;

(2),,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知邊長為5的菱形ABCD中,對角線AC長為6,點E在對角線BD上且tanEAC=,則BE的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(閱讀理解)

借助圖形的直觀性,我們可以直接得到一些有規(guī)律的算式的結(jié)果,比如:由圖①,通過對小黑點的計數(shù),我們可以得到1+2+3+…+nnn+1);由圖②,通過對小圓圈的計數(shù),我們可以得到1+3+5+…+2n1)=n2

那么13+23+33+…+n3結(jié)果等于多少呢?

如圖③,AB是正方形ABCD的一邊,BB′n,B′B″n1,B″B′′′n2,……,顯然AB1+2+3+…+n nn+1),分別以AB′AB″、AB′′′、為邊作正方形,將正方形ABCD分割成塊,面積分別記為Sn、Sn1Sn2、、S1

(規(guī)律探究)

結(jié)合圖形,可以得到Sn2BB′×BCBB′2   

同理有Sn1   ,Sn2   ,,S113

所以13+23+33+…+n3S四邊形ABCD   

(解決問題)

根據(jù)以上發(fā)現(xiàn),計算的結(jié)果為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在新冠狀病毒的影響下,某學校積極響應政府號召,開展了“停課不停學”網(wǎng)上授課工作,為了網(wǎng)上授課工作順利開展和取得良好成效,該校在授課第一周和授課第二周分別隨機抽取部分學生進行“網(wǎng)上授課教學效果反饋網(wǎng)上調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,調(diào)查顯示:兩次調(diào)查反饋教學效果為“較差”人數(shù)相等,第二周反饋教學效果為“很好”人數(shù)比例比第一周多,請根據(jù)調(diào)查顯示和統(tǒng)計圖中的信息解決下列問題:

在圖1中,表示“較好”的扇形圓心角的度數(shù)為_ 度,并把圖2條形統(tǒng)計圖補充完整;

若把調(diào)查反饋教學效果“很好”和“較好”作為網(wǎng)上授課成效良好的標準,該校大約有名學生,請估計授課第二周學校網(wǎng)上授課成效良好的學生人數(shù);

有一位家長認為,兩次調(diào)查反饋授課效果為較差人數(shù)相等,因此學校在一周后調(diào)整的措施并沒有提高網(wǎng)上授課效果,這位家長分析數(shù)據(jù)的方法合理嗎?請結(jié)合統(tǒng)計圖,對這位家長分析數(shù)據(jù)的方法及學校在一周后調(diào)整措施對網(wǎng)上授課效果的影響談談你的看法.

查看答案和解析>>

同步練習冊答案