【題目】已知:如圖,在菱形ABCD中,點(diǎn)E、F分別為邊CD、AD的中點(diǎn),連接AE,CF,求證:△ADE≌△CDF.

【答案】證明:∵四邊形ABCD是菱形,
∴AD=CD,
∵點(diǎn)E、F分別為邊CD、AD的中點(diǎn),
∴AD=2DF,CD=2DE,
∴DE=DF,
在△ADE和△CDF中, ,
∴△ADE≌△CDF(SAS).
【解析】由菱形的性質(zhì)得出AD=CD,由中點(diǎn)的定義證出DE=DF,由SAS證明△ADE≌△CDF即可.此題主要考查了全等三角形的判定、菱形的性質(zhì);熟練掌握菱形的性質(zhì),證明三角形全等是解決問(wèn)題的關(guān)鍵.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用菱形的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,BF平分∠ABC,AF⊥BF于點(diǎn)F,D為AB的中點(diǎn),連接DF延長(zhǎng)交AC于點(diǎn)E.若AB=10,BC=16,則線段EF的長(zhǎng)為
( 。

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是 上一點(diǎn),且 = ,連接CF并延長(zhǎng)交AD的延長(zhǎng)線于點(diǎn)E,連接AC.若∠ABC=105°,∠BAC=25°,則∠E的度數(shù)為(  )

A.45°
B.50°
C.55°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們?cè)趯W(xué)完“平移、軸對(duì)稱、旋轉(zhuǎn)”三種圖形的變化后,可以進(jìn)行進(jìn)一步研究,請(qǐng)根據(jù)示例圖形,完成下表.

圖形的變化

示例圖形

與對(duì)應(yīng)線段有關(guān)的結(jié)論

與對(duì)應(yīng)點(diǎn)有關(guān)的結(jié)論

平移

AA′=BB′
AA′∥BB′

軸對(duì)稱

旋轉(zhuǎn)

AB=A′B′;對(duì)應(yīng)線段AB和A′B′所在的直線相交所成的角與旋轉(zhuǎn)角相等或互補(bǔ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把函數(shù)y=x的圖象上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的2倍,橫坐標(biāo)不變,得到函數(shù)y=2x的圖象;也可以把函數(shù)y=x的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的 倍,縱坐標(biāo)不變,得到函數(shù)y=2x的圖象.
類似地,我們可以認(rèn)識(shí)其他函數(shù).

(1) 把函數(shù)y= 的圖象上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的倍,橫坐標(biāo)不變,得到函數(shù)y= 的圖象;也可以把函數(shù)y= 的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到函數(shù)y= 的圖象.
(2)已知下列變化:①向下平移2個(gè)單位長(zhǎng)度;②向右平移1個(gè)單位長(zhǎng)度;③向右平移 個(gè)單位長(zhǎng)度;④縱坐標(biāo)變?yōu)樵瓉?lái)的4倍,橫坐標(biāo)不變;⑤橫坐標(biāo)變?yōu)樵瓉?lái)的 倍,縱坐標(biāo)不變;⑥橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變.
(Ⅰ)函數(shù)y=x2的圖象上所有的點(diǎn)經(jīng)過(guò)④→②→①,得到函數(shù)的圖象;
(Ⅱ)為了得到函數(shù)y=﹣ (x﹣1)2﹣2的圖象,可以把函數(shù)y=﹣x2的圖象上所有的點(diǎn)
A.①→⑤→③B.①→⑥→③C.①→②→⑥D(zhuǎn).①→③→⑥
(3)函數(shù)y= 的圖象可以經(jīng)過(guò)怎樣的變化得到函數(shù)y=﹣ 的圖象?(寫(xiě)出一種即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家草莓采摘園的草莓品質(zhì)相同,銷售價(jià)格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進(jìn)園需購(gòu)買(mǎi)50元的門(mén)票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進(jìn)園不需購(gòu)買(mǎi)門(mén)票,采摘園的草莓超過(guò)一定數(shù)量后,超過(guò)部分打折優(yōu)惠.優(yōu)惠期間,設(shè)某游客的草莓采摘量為x(千克),在甲采摘園所需總費(fèi)用為y1(元),在乙采摘園所需總費(fèi)用為y2(元),圖中折線OAB表示y2與x之間的函數(shù)關(guān)系.

(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價(jià)格是每千克元;
(2)求y1、y2與x的函數(shù)表達(dá)式;
(3)在圖中畫(huà)出y1與x的函數(shù)圖象,并寫(xiě)出選擇甲采摘園所需總費(fèi)用較少時(shí),草莓采摘量x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)活動(dòng)﹣旋轉(zhuǎn)變換

(1)如圖①,在△ABC中,∠ABC=130°,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)50°得到△A′B′C,連接BB′,求∠A′B′B的大;
(2)如圖②,在△ABC中,∠ABC=150°,AB=3,BC=5,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到△A′B′C,連接BB′,以A′為圓心,A′B′長(zhǎng)為半徑作圓.
①猜想:直線BB′與⊙A′的位置關(guān)系,并證明你的結(jié)論;
②連接A′B,求線段A′B的長(zhǎng)度;
(3)如圖③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)2β角度(0°<2β<180°)得到△A′B′C,連接A′B和BB′,以A′為圓心,A′B′長(zhǎng)為半徑作圓,問(wèn):角α與角β滿足什么條件時(shí),直線BB′與⊙A′相切,請(qǐng)說(shuō)明理由,并求此條件下線段A′B的長(zhǎng)度(結(jié)果用角α或角β的三角函數(shù)及字母m、n所組成的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A,B是反比例函數(shù)y= (k>0,x>0)圖象上的兩點(diǎn),BC∥x軸,交y軸于點(diǎn)C,動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運(yùn)動(dòng),終點(diǎn)為C,過(guò)P作PM⊥x軸,垂足為M.設(shè)三角形OMP的面積為S,P點(diǎn)運(yùn)動(dòng)時(shí)間為t,則S關(guān)于x的函數(shù)圖象大致為(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,△ABC中,∠ACB=90°,AB=8cm,D是AB的中點(diǎn).現(xiàn)將△BCD沿BA方向平移1cm,得到△EFG,F(xiàn)G交AC于H,則GH的長(zhǎng)等于cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案