【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中.

(1)把△ABC平移至點A′的位置,使點A與點A′對應(yīng),畫出平移后得到的△A′B′C′;

(2)△A′B′C′可以看成是把△ABC如何平移得到的?

(3)寫出圖中與線段AA′平行且相等的線段(可用字母表示).

【答案】(1)作圖見解析;(2)先向右平移5個單位長度,再向上平移4個單位長度(3)BB′,CC′.

【解析】

(1)直接利用平移的性質(zhì)得出對應(yīng)點位置進(jìn)而得出答案;

(2)利用對應(yīng)點移動的規(guī)律進(jìn)而得出圖形的平移規(guī)律;

(3)直接利用平移的性質(zhì)得出相等的線段

(1)如圖所示,A′B′C′即所求.

(2)A′B′C′可以看成是把ABC先向右平移5(或向上平移4)單位長度,再向上平移4(向右平移5)單位長度而得到的.

(3)圖中可用字母表示,與線段AA′平行且相等的線段有BB′,CC′.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為4×4的網(wǎng)格(每個小正方形的邊長均為1)與數(shù)軸.

(1)求出圖①中陰影部分的面積;

(2)求出圖①中陰影部分正方形的邊長;

(3)在圖②所示的數(shù)軸上作出表示的點A.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究題:

(1)如圖1,兩條水平的直線被一條豎直的直線所截,同位角有__________,內(nèi)錯角有__________,同旁內(nèi)角有__________對;

(2)如圖2,三條水平的直線被一條豎直的直線所截,同位角有__________,內(nèi)錯角有__________,同旁內(nèi)角有__________對;

(3)根據(jù)以上探究的結(jié)果,n(n為大于1的整數(shù))條水平直線被一條豎直直線所截,同位角有__________,內(nèi)錯角有__________,同旁內(nèi)角有__________.(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年五一節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^程中,中途休息了一段時間設(shè)他從山腳出發(fā)后所用的時間為t分鐘),所走的路程為s),s與t之間的函數(shù)關(guān)系如圖所示下列說法錯誤的是( )

A小明中途休息用了20分鐘

B小明休息前爬山的平均速度為每分鐘70米

C小明在上述過程中所走的路程為6600米

D小明休息前爬山的平均速度大于休息后爬山的平均速度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,l1表示某公司一種產(chǎn)品一天的銷售收入與銷售量的關(guān)系,l2表示該公司這種產(chǎn)品一天的銷售成本與銷售量的關(guān)系.

(1)x=1時,銷售收入=   萬元,銷售成本=   萬元,盈利(收入﹣成本)=   萬元;

(2)一天銷售   件時,銷售收入等于銷售成本;

(3)l2對應(yīng)的函數(shù)表達(dá)式是   ;

(4)你能寫出利潤與銷售量間的函數(shù)表達(dá)式嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知α是銳角,且點A( ,a),B(sin30°+cos30°,b),C(﹣m2+2m﹣2,c)都在二次函數(shù)y=﹣x2+x+3的圖象上,那么a、b、c的大小關(guān)系是(
A.a<b<c
B.a<c<b
C.b<c<a
D.c<b<a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長度為1個單位長度的小正方形組成的正方形中,點A、BC在小正方形的頂點上.

在圖中畫出與關(guān)于直線l成軸對稱的;

三角形ABC的面積為______;

AC為邊作與全等的三角形,則可作出______個三角形與全等;

在直線l上找一點P,使的長最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,分別以AB、AC為邊作ABD和ACE,且AD=AB,AC=AE,DAB=CAE,連接DC與BE.G、F分別是DC與BE的中點.

(1)求證:DC=BE;

(2)當(dāng)DAB=8,求AFG的度數(shù);

(3)DAB=AFG與的數(shù)量關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

(1)求出△ABC的面積;

(2)在圖中作出△ABC關(guān)于y軸的對稱圖形△A1B1C1;

(3)寫出點A1,B1,C1的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案