【題目】計算:

14a2ab)﹣(2a+b)(2ab

2)(2x+122x1)(x+3

【答案】14a24ab+b2;(22x2+7

【解析】

1)根據單項式乘多項式和平方差公式可以解答本題;

2)根據完全平方公式和多項式乘多項式可以解答本題.

解:(14a2ab)﹣(2a+b)(2ab

8a24ab4a2+b2

4a24ab+b2;

2)(2x+122x1)(x+3

4x2+4x+12x26x+2x+6

2x2+7

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知a+b=7,a-b=3,則a2-b2的值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知平行四邊形OABC的三個頂點AB、C在以O為圓心的半圓上,過點CCDAB,分別交AB、AO的延長線于點DE,AE交半圓O于點F,連接CF

1)判斷直線DE與半圓O的位置關系,并說明理由;

2)①求證:CF=OC;

②若半圓O的半徑為12,求陰影部分的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料并回答問題:

我們知道,乘法公式可以用平面幾何圖形的面積來表示,實際上還有一些代數(shù)恒等式也可以用這種形式表示,如:(2a+b)(a+b)=2a2+3ab+b2,就可以用圖1或圖2等圖形的面積表示.

(1)請寫出圖3所表示的等式:_____;

(2)試畫一個幾何圖形,使它的面積表示:(a+3b)(2a+b)=2a2+7ab+3b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,每個最小方格的邊長均為1個單位長度,P1,P2,P3,…均在格點上其順序按圖中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),…,根據這個規(guī)律,點P2 017的坐標為( )

A. (-504,-504) B. (-505,-504) C. (504,-504) D. (-504,505)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,二次函數(shù)圖象的頂點為A1、﹣4),且經過點B3,0).

1)求該二次函數(shù)的解析式;

2)當﹣3x3時,函數(shù)值y的增減情況;

3)將拋物線怎樣平移才能使它的頂點為原點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:拋物線

(1)寫出拋物線的開口方向、對稱軸;

(2)函數(shù)y有最大值還是最小值?并求出這個最大(。┲;

(3)設拋物線與y軸的交點為P,與x軸的交點為Q,求直線PQ的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,由正方形ABCD的頂點A引一直線分別交BD、CDBC的延長線于E、F、G,連接EC.

求證:CECGF的外接圓O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】背景資料:

在已知ABC所在平面上求一點P,使它到三角形的三個頂點的距離之和最。

這個問題是法國數(shù)學家費馬1640年前后向意大利物理學家托里拆利提出的,所求的點被人們稱為“費馬點”.

如圖,當ABC三個內角均小于120°時,費馬點PABC內部,此時APB=∠BPC=∠CPA=120°,此時,PAPBPC的值最。

解決問題:

(1)如圖②,等邊ABC內有一點P,若點P到頂點A、BC的距離分別為3,4,5,求APB的度數(shù).

為了解決本題,我們可以將ABP繞頂點A旋轉到ACP′處,此時ACP′≌△ABP,這樣就可以利用旋轉變換,將三條線段PA,PBPC轉化到一個三角形中,從而求出APB=   

基本運用:

(2)請你利用第(1)題的解答思想方法,解答下面問題

如圖③,△ABC中,CAB=90°,AB=ACE,FBC上的點,且EAF=45°,判斷BE,EF,FC之間的數(shù)量關系并證明;

能力提升:

(3)如圖,在Rt△ABC中,C=90°,AC=1,∠ABC=30°,點PRt△ABC的費馬點,

連接AP,BP,CP,求PA+PB+PC的值.

查看答案和解析>>

同步練習冊答案