【題目】在平面直角坐標(biāo)系xOy中,記直線y=x+1為l.點A1是直線l與y軸的交點,以A1O為邊作正方形A1OC1B1,使點C1落在在x軸正半軸上,作射線C1B1交直線l于點A2,以A2C1為邊作正方形A2C1C2B2,使點C2落在在x軸正半軸上,依次作下去,得到如圖所示的圖形.則點B4的坐標(biāo)是 ,點Bn的坐標(biāo)是

【答案】(15,8); (2n-1,2n-1.

【解析】

試題解析:把x=0代入直線y=x+1,可得:y=1,

所以可得:點B1的坐標(biāo)是(1,1)

把x=1代入直線y=x+1,可得:y=2,

所以可得:點B2的坐標(biāo)是(3,2),

同理可得點B3的坐標(biāo)是(7,4);點B4的坐標(biāo)是(15,8);

由以上得出規(guī)律是Bn的坐標(biāo)為(2n-1,2n-1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知點A0,6)、點B8,0),動點P從點A開始在線段AO上以每秒1個單位長度的速度向點O移動,同時動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A移動,設(shè)點P、Q移動的時間為t秒.

1求直線AB的解析式;

2當(dāng)t為何值時,△APQ與△AOB相似?

3當(dāng)t為何值時,△APQ的面積為個平方單位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,關(guān)于x的方程:x+c+的解是x1c,x2;xc的解是x1c,x2=﹣;x+c+的解是x1c,x2;x+c+的解是x1c,x2;……

1)請觀察上述方程與解的特征,比較關(guān)于x的方程x+c+a≠0)與它們的關(guān)系猜想它的解是什么,并利用方程的解的概念進(jìn)行驗證.

2)可以直接利用(1)的結(jié)論,解關(guān)于x的方程:x+a+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明經(jīng)過市場調(diào)查,整理出他媽媽商店里一種商品在第天的銷售量的相關(guān)信息如下表:

時間第(天)

售價(元/件)

50

每天銷量(件)

已知該商品的進(jìn)價為每件20元,設(shè)銷售該商品的每天利潤為.

1)求出的函數(shù)關(guān)系式;

2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?

3)該商品在銷售過程中,共有多少天每天銷售利潤不低于2400元?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BC10,高AD8,MN、P分別在邊AB、BC、AC上移動,但不與A、B、C重合,連接MNNP、MP,且MP始終與BC保持平行,ADMP相交于點E,設(shè)MPx,MNP的面積用y表示.

1)求y關(guān)于x的函數(shù)關(guān)系式;

2)當(dāng)x取什么值時,y有最大值,并求出的最大值;

3)當(dāng)x取什么值時,MNP是等腰直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商業(yè)集團(tuán)新建一小車停車場,經(jīng)測算,此停車場每天需固定支出的費用(設(shè)施維修費、車輛管理人員工資等)為800元.為制定合理的收費標(biāo)準(zhǔn),該集團(tuán)對一段時間每天小車停放輛次與每輛次小車的收費情況進(jìn)行了調(diào)查,發(fā)現(xiàn)每輛次小車的停車費不超過5元時,每天來此處停放的小車可達(dá)1440輛次;若停車費超過5元,則每超過1元,每天來此處停放的小車就減少120輛次.為便于結(jié)算,規(guī)定每輛次小車的停車費x(元)只取整數(shù),用y(元)表示此停車場的日凈收入,且要求日凈收入不低于2512元.(日凈收入=每天共收取的停車費﹣每天的固定支出)

1)當(dāng)x5時,寫出yx之間的關(guān)系式,并說明每輛小車的停車費最少不低于多少元;

2)當(dāng)x5時,寫出yx之間的函數(shù)關(guān)系式(不必寫出x的取值范圍);

3)該集團(tuán)要求此停車場既要吸引客戶,使每天小車停放的輛次較多,又要有較大的日凈收入.按此要求,每輛次小車的停車費應(yīng)定為多少元?此時日凈收入是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交與A(1,0),B(- 3,0)兩點

(1)求該拋物線的解析式;

(2)設(shè)(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得QAC的周長最?若存在,求出Q點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地盛產(chǎn)櫻桃,一年一度的櫻桃節(jié)期間,很多果園推出了免費品嘗和優(yōu)惠采摘活動,其中甲、乙兩家果園的櫻桃品質(zhì)相同,銷售價格也相同,但推出了不同的采摘方案:

甲園

游客進(jìn)園需購買人的門票,采摘的櫻桃六折優(yōu)惠

乙園

游客進(jìn)園不需購買門票,采摘的櫻桃在一定數(shù)量以內(nèi)按原價購買,超過部分打折購買

小明和爸爸、媽媽在櫻桃節(jié)期間也來采摘櫻桃,若設(shè)他們的櫻桃采摘量為(千克)(出園時將自己采摘的櫻桃全部購買),在甲采摘園所需總費用為(元)在乙采摘園所需總費用為(元),圖中的折線表示之間的函數(shù)關(guān)系.

1)①甲、乙兩果園的櫻桃單價為_____________千克;

②直接寫出的函數(shù)表達(dá)式:_________________,并在圖中補(bǔ)畫出的函數(shù)圖象;

2)求出之間的函數(shù)關(guān)系式;

3)若小明一家當(dāng)天所采摘的櫻桃不少于千克,選擇哪個采摘園更劃算?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點A的坐標(biāo)為(07),點B的坐標(biāo)為(0,3),點C的坐標(biāo)為(3,0).

1)在圖中作出ABC的外接圓⊙P(保留必要的作圖痕跡,不寫作法)

2 若在x軸的正半軸上有一點D(異與C點),且∠ADB=∠ACB,則點D的坐標(biāo)為 

3)若用扇形PAC圍成一個圓錐,那么這個圓錐的底面半徑為   

查看答案和解析>>

同步練習(xí)冊答案