15.若5a=100,5b=4,求9a÷32b的值.

分析 根據(jù)冪的乘方,可得同底數(shù)冪的除法,根據(jù)同底數(shù)冪的除法底數(shù)不變指數(shù)相減,可得答案.

解答 解:5a-b=5a÷5b=100÷4=25=52
a-b=2.
9a÷32b=32a÷32b=32a-2a=32(a-b)=81.

點(diǎn)評 本題考查了同底數(shù)冪的除法,利用冪的乘方得出同底數(shù)冪的除法是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,已知AB=AE,AC=AD,增加下列條件:①∠CAE=∠DAB;②BC=ED;③∠C=∠D=90°;④∠B=∠E.其中能使△ABC≌△AED的條件有(  )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.把根式(b-a)$\sqrt{\frac{1}{{a}^{2}-^{2}}}$化為最簡二次根式是( 。
A.$\frac{1}{a+b}$$\sqrt{{a}^{2}-^{2}}$B.$\frac{1}{a-b}$$\sqrt{{a}^{2}-^{2}}$C.-$\frac{1}{a+b}$$\sqrt{{a}^{2}-^{2}}$D.-$\frac{1}{a-b}$$\sqrt{{a}^{2}-^{2}}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.在一組數(shù)據(jù)a1,a2,a3,…an中,已知a1=2k,a2=-$\frac{{k}^{2}}{{a}_{1}}$=-$\frac{1}{3}$k,a3=a2+k=$\frac{2}{3}$k,a4=-$\frac{{k}^{2}}{{a}_{2}}$=-$\frac{3}{2}$k,a5=a4+k=-$\frac{1}{2}$k,a6=-$\frac{{k}^{2}}{{a}_{5}}$=2k,以此類推,則a2016=2k.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.在[$\frac{{1}^{2}}{2012}$],[$\frac{{2}^{2}}{2012}$],[$\frac{{3}^{2}}{2012}$],…[$\frac{201{2}^{2}}{2012}$]中,有多少個(gè)不同的整數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.在式子$\sqrt{3}$,$\sqrt{a+4}$,$\sqrt{{a}^{2}}$,$\sqrt{m-3}$(m≥3),$\sqrt{-2x}$(x<0)中,一定是二次根式的有( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.已知M=$\root{3m-4}{m+3}$是m+3的算術(shù)平方根,N=$\root{n-2}{n-2}$是n-2的立方根,求(n-m)2015的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.老師在黑板上寫出下面的一道題:
已知$\sqrt{7}$=a,$\sqrt{70}$=b,用含a,b的代數(shù)式表示$\sqrt{4.9}$.兩位在黑板上分別板書了自己的解答:
同學(xué)甲:$\sqrt{4.9}$=$\sqrt{\frac{49}{10}}=\sqrt{\frac{49×10}{10×10}}$=$\sqrt{\frac{490}{100}}=\frac{{\sqrt{7×70}}}{10}$=$\frac{{\sqrt{7}×\sqrt{70}}}{10}$=$\frac{ab}{10}$.
同學(xué)乙:$\sqrt{4.9}$=$\sqrt{\frac{49}{10}}$=$\sqrt{\frac{49×10}{10×10}}$=$\frac{7\sqrt{10}}{10}$=$\frac{7}{10}$×$\sqrt{\frac{70}{7}}$=$\frac{7}{10}$×$\frac{\sqrt{70}}{\sqrt{7}}$=$\frac{7b}{10a}$.
(1)你認(rèn)為兩位同學(xué)的解答都正確嗎?
(2)同學(xué)并得出的結(jié)果為$\frac{7a}$.老師說是正確的,你知道丙是怎樣做的嗎?請你寫出丙的解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.如圖,⊙P的圓心為P(-2,1),半徑為2,直線MN過點(diǎn)M(2,3),N(4,1).
(1)請你在圖中作出⊙P關(guān)于y軸對稱的⊙P′(不要求寫作法);
(2)請判斷(1)中⊙P′與直線MN的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案