【題目】“囧”( jiong)是中文地區(qū)網(wǎng)絡(luò)社群間一種流行的表情符號,像一個人臉郁悶的神情,被賦予“郁悶、悲傷、無奈”之意.如圖所示,一張邊長為10的正方形的紙片,剪去兩個一樣的小直角三角形和一個長方形得到一個“囧”字圖案(陰影部分).設(shè)剪去的小長方形長和寬分別為,剪去的兩個小直角三角形的兩直角邊長也分別為.
(1)用含有的代數(shù)式表示圖中“囧”的面積;
(2)若時,求此時“囧”的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù) 的圖象相交于第一、三象限內(nèi)的兩點(diǎn),與軸交于點(diǎn) .
⑴求該反比例函數(shù)和一次函數(shù)的解析式;
⑵在軸上找一點(diǎn)使最大,求的最大值及點(diǎn)的坐標(biāo);
⑶直接寫出當(dāng)時,的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中, △ABC的三個頂點(diǎn)的位置如圖所示,點(diǎn)A'的坐標(biāo)是
(-2,2), 現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)A',點(diǎn)B′、C′分別是B、C的對應(yīng)點(diǎn)。
(1)請畫出平移后的像△A'B'C'(不寫畫法) ,并直接寫出點(diǎn)B′、C′的坐標(biāo):
B′ ( ) 、C′ ( ) ;
(2)若△ABC 內(nèi)部一點(diǎn)P的坐標(biāo)為(a,b),則點(diǎn)P 的對應(yīng)點(diǎn)P ′的坐標(biāo)是 ( ) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求出下列x的值:
(1)4x2﹣81=0; (2)64(x+1)3=27;
(3)-(x-3)3=27 (4)9(3x+2)2-64=0;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=5,AB的垂直平分線DE分別交AB,AC于E,D.
(1)若△BCD的周長為8,求BC的長;
(2)若BC=4,求△BCD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個四邊形的一條對角線把四邊形分成兩個等腰三角形,且其中一個等腰三角形的底角是另一個等腰三角形底角的2倍,我們把這條對角線叫做這個四邊形的黃金線,這個四邊形叫做黃金四邊形.
(1)如圖1,在四邊形ABCD中,AB=AD=DC,對角線AC,BD都是黃金線,且AB<AC,CD<BD,求四邊形ABCD各個內(nèi)角的度數(shù);
(2)如圖2,點(diǎn)B是弧AC的中點(diǎn),請?jiān)凇袿上找出所有的點(diǎn)D,使四邊形ABCD的對角線AC是黃金線(要求:保留作圖痕跡);
(3)在黃金四邊形ABCD中,AB=BC=CD,∠BAC=30°,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個車隊(duì)共有20輛小轎車,正以每小時36千米的速度在一條筆直的街道上勻速行駛,行駛時車與車的間隔均相等,甲停在路邊等人,他發(fā)現(xiàn)該車隊(duì)從第一輛車的車頭到最后一輛的車尾經(jīng)過自己身邊共用了20秒的時間,假設(shè)每輛車的車長均為4.87米.
(1)求行駛時車與車的間隔為多少米?
(2)若乙在街道一側(cè)的人行道上與車隊(duì)同向而行,速度為米/秒,當(dāng)?shù)谝惠v車的車頭到最后一輛車的車尾經(jīng)過他身邊共用了40秒,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=x+4與坐標(biāo)軸分別交于A、B兩點(diǎn),拋物線y=﹣x2+bx+c過A、B兩點(diǎn),點(diǎn)D為線段AB上一動點(diǎn),過點(diǎn)D作CD⊥x軸于點(diǎn)C,交拋物線于點(diǎn)E.
(1)求拋物線的解析式.
(2)求△ABE面積的最大值.
(3)連接BE,是否存在點(diǎn)D,使得△DBE和△DAC相似?若存在,求出點(diǎn)D坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,CD⊥DA,DA⊥AB,∠1=∠2.試確定射線DF與AE的位置關(guān)系,并說明你的理由.
(1)問題的結(jié)論:DF______AE.
(2)證明思路欲證DF______AE,只要證∠3=______.
(3)證明過程:
證明:∵CD⊥DA,DA⊥AB,( )
∴∠CDA=∠DAB=______°(垂直定義)
∵∠1=∠2,( )
∴∠CDA-∠1=______-______,(等式的性質(zhì))
即∠3=______
∴DF______AE( , )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com