【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AB邊上一點(diǎn),過(guò)點(diǎn)C作CF∥AB交ED的延長(zhǎng)線于點(diǎn)F.
(1)求證:△BDE≌△CDF.
(2)當(dāng)AD⊥BC,AE=2,CF=4時(shí),求AC的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)6.
【解析】
(1)根據(jù)平行線的性質(zhì)得到∠B=∠FCD,∠BED=∠F,由AD是BC邊上的中線,得到BD=CD,于是得到結(jié)論;
(2)根據(jù)全等三角形的性質(zhì)得到BE=CF=4,求得AB=AE+BE=6,于是得到結(jié)論.
(1)證明:∵CF∥AB,
∴∠B=∠FCD,∠BED=∠F,
∵AD是BC邊上的中線,
∴BD=CD,在△BDE和△CDF中,,
∴△BDE≌△CDF(AAS);
(2)解:∵△BDE≌△CDF,
∴BE=CF=4,
∴AB=AE+BE=2+4=6,
∵AD⊥BC,BD=CD,
∴AC=AB=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,點(diǎn)E在對(duì)角線AC上,連接BE、DE,
(1)如圖1,作EM⊥AB交AB于點(diǎn)M,當(dāng)AE=時(shí),求BE的長(zhǎng);
(2)如圖2,作EG⊥BE交CD于點(diǎn)G,求證:BE=EG;
(3)如圖3,作EF⊥BC交BC于點(diǎn)F,設(shè)BF=x,△BEF的面積為y.當(dāng)x取何值時(shí),y取得最大值,最大值是多少?當(dāng)△BEF的面積取得最大值時(shí),在直線EF取點(diǎn)P,連接BP、PC,使得∠BPC=45°,求EP的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中,,,.長(zhǎng)為的線段在的邊上沿方向以的速度向點(diǎn)運(yùn)動(dòng)(運(yùn)動(dòng)前點(diǎn)與點(diǎn)重合).過(guò),分別作的垂線交直角邊于,兩點(diǎn),線段運(yùn)動(dòng)的時(shí)間為.
若的面積為,寫(xiě)出與的函數(shù)關(guān)系式(寫(xiě)出自變量的取值范圍);
線段運(yùn)動(dòng)過(guò)程中,四邊形有可能成為矩形嗎?若有可能,求出此時(shí)t的值;若不可能,說(shuō)明理由;
為何值時(shí),以,,為頂點(diǎn)的三角形與相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】賽龍舟是端午節(jié)的主要習(xí)俗,某市甲乙兩支龍舟隊(duì)在端午節(jié)期間進(jìn)行劃龍舟比賽,從起點(diǎn)A駛向終點(diǎn)B,在整個(gè)行程中,龍舟離開(kāi)起點(diǎn)的距離y(米)與時(shí)間x(分鐘)的對(duì)應(yīng)關(guān)系如圖所示,請(qǐng)結(jié)合圖象解答下列問(wèn)題:
(1)起點(diǎn)A與終點(diǎn)B之間相距多遠(yuǎn)?
(2)哪支龍舟隊(duì)先出發(fā)?哪支龍舟隊(duì)先到達(dá)終點(diǎn)?
(3)分別求甲、乙兩支龍舟隊(duì)的y與x函數(shù)關(guān)系式;
(4)甲龍舟隊(duì)出發(fā)多長(zhǎng)時(shí)間時(shí)兩支龍舟隊(duì)相距200米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在正方形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,OE∥AB交BC于點(diǎn)E.若AD=8cm,則OE的長(zhǎng)為( )
A. 3cm B. 4cm C. 6cm D. 8cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊△ABC中,E為BC邊上一點(diǎn),G為BC延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)E作∠AEM=60°,交∠ACG的平分線于點(diǎn)M.
(1)如圖1,當(dāng)點(diǎn)E在BC邊的中點(diǎn)位置時(shí),求證:AE=EM;
(2)如圖2,當(dāng)點(diǎn)E在BC邊的任意位置時(shí),(1)中的結(jié)論是否成立?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(a,0),B(0,a),等腰直角三角形ODC的斜邊經(jīng)過(guò)點(diǎn)B,OE⊥AC,交AC于E,若OE=2,則△BOD與△AOE的面積之差為( 。
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“繽紛節(jié)”已經(jīng)成為西南大學(xué)附中一張響亮的名片,受到了社會(huì)各界的高度贊揚(yáng)繽紛意寓繽紛的青春,繽紛的風(fēng)采,繽紛的個(gè)性,繽紛的創(chuàng)意,它充分展現(xiàn)了我校學(xué)子的青春與活力.初2020級(jí)“知義班”班委計(jì)劃給全班學(xué)生購(gòu)置演出服裝以用于“繽紛節(jié)”晚會(huì)的舞臺(tái)劇表演經(jīng)與經(jīng)銷(xiāo)商溝通,男生的服裝購(gòu)置總價(jià)為1500元,女生的服裝總價(jià)為2000元,由于女生的服裝工藝較復(fù)雜,所以商家最后報(bào)出的服裝單價(jià)女生比男生貴20元,其中“知義班”男女生人數(shù)相等.
(1)請(qǐng)問(wèn)男女生的表演服裝單價(jià)分別為多少元?
(2)在看到服裝樣品后,初2020級(jí)決定再買(mǎi)120套相同的服裝,與商家溝通后女生服裝的單價(jià)比之前降低了20%,男生服裝的單價(jià)比之前降低了10%,如果年級(jí)購(gòu)買(mǎi)這120套服裝的費(fèi)用不超過(guò)7300元,那么年級(jí)最多可購(gòu)買(mǎi)多少套女生的服裝?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是某同學(xué)對(duì)多項(xiàng)式(x2-4x+2)(x2-4x+6)+4進(jìn)行因式分解的過(guò)程.
解:設(shè)x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
= y2+8y+16 (第二步)
=(y+4)2 (第三步)
=(x2-4x+4)2 (第四步)
回答下列問(wèn)題:
(1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______.
A.提取公因式 B.平方差公式 C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式
(2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)
若不徹底,請(qǐng)直接寫(xiě)出因式分解的最后結(jié)果_________.
(3)請(qǐng)你模仿以上方法嘗試對(duì)多項(xiàng)式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com