(本題滿分10分)

如圖,已知OA⊥OB,OA=8,OB=6,以AB為邊作矩形ABCD,使AD=a,過(guò)點(diǎn)D作DE垂直O(jiān)A的延長(zhǎng)線交于點(diǎn)E.

(1)求證:△OAB∽△EDA;                               

(2)當(dāng)a為何值時(shí),△OAB與△EDA全等?并求出此時(shí)點(diǎn)C到OE的距離.

 

(1)證明:

∵OA⊥OB ,∴∠1與∠2互余,

∵四邊形ABCD是矩形,∴∠BAD=90o

∴∠2與∠3互余,∴∠1=∠3,……………………… 2分

∵OA⊥OB,DE⊥OA,∴∠BOA=∠DEA=90o………3分

∴△OAB∽△EDA.………………………………………4分

(2)解:當(dāng)a=10時(shí),△OAB與△EDA全等.……………5分

過(guò)點(diǎn)C作CH⊥OE交OE于點(diǎn)H, 則CH就是點(diǎn)C到OE的距離,過(guò)點(diǎn)B作BF⊥CH交CH于點(diǎn)F,……… 6分

∵AD=AB,∴矩形ABCD為正方形,

∴BC=AB,∠BOA=∠CBA=90o

∵OA⊥OB ,CH⊥OA,∴OB∥CH,

∴∠FBO=∠CFB,

∵BF⊥CH,∴∠FBO=90o

∴∠4與∠5互余,∠1與∠5互余,∴∠1=∠4,

∵∠BFC=∠BOA,BC=AB,……………………………………………………… 8分

∴△OAB≌△FCB,……………………………………………………………………9分

∴CF=OA=8,BO=BF,∴四邊形OHFB為正方形,

∴HF=OB=6,∴點(diǎn)C到OE的距離CH=CF+HF=8+6=14.………………10分

解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分10分)

如圖,將OA = 6,AB = 4的矩形OABC放置在平面直角坐標(biāo)系中,動(dòng)點(diǎn)M、N以每秒1個(gè)單位的速度分別從點(diǎn)A、C同時(shí)出發(fā),其中點(diǎn)M沿AO向終點(diǎn)O運(yùn)動(dòng),點(diǎn)N沿CB向終點(diǎn)B運(yùn)動(dòng),當(dāng)兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)了t秒時(shí),過(guò)點(diǎn)N作NP⊥BC,交OB于點(diǎn)P,連接MP.

(1)點(diǎn)B的坐標(biāo)為   ;用含t的式子表示點(diǎn)P的坐標(biāo)為     ;(3分)

(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式(0 < t < 6);并求t為何值時(shí),S有最大值?(4分)

(3)試探究:當(dāng)S有最大值時(shí),在y軸上是否存在點(diǎn)T,使直線MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC面積的?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(3分)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分10分)如圖,已知二次函數(shù)的圖象的頂點(diǎn)為.二次函數(shù)的圖象與軸交于原點(diǎn)及另一點(diǎn),它的頂點(diǎn)在函數(shù)的圖象的對(duì)稱軸上.

(1)求點(diǎn)與點(diǎn)的坐標(biāo);
(2)當(dāng)四邊形為菱形時(shí),求函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分10分)如圖是某品牌太陽(yáng)能熱火器的實(shí)物圖和橫斷面示意圖,已知真空集熱管與支架所在直線相交于水箱橫斷面的圓心,支架與水平面垂直,厘米,,另一根輔助支架厘米,
(1)求垂直支架的長(zhǎng)度;(結(jié)果保留根號(hào))
(2)求水箱半徑的長(zhǎng)度.(結(jié)果保留三個(gè)有效數(shù)字,參考數(shù)據(jù):
         

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分10分)
如圖,四邊形ABCD是長(zhǎng)方形.

(1)作△ABC關(guān)于直線AC對(duì)稱的圖形;
(2)試判斷(1)中所作的圖形與△ACD重疊部分的三角形形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年江蘇省泰州市中考數(shù)學(xué)試卷 題型:解答題

(本題滿分10分)如圖,以點(diǎn)O為圓心的兩個(gè)同心圓中,矩形ABCD的邊BC為大圓的弦,邊AD與小圓相切于點(diǎn)M,OM的延長(zhǎng)線與BC相交于點(diǎn)N。

(1)點(diǎn)N是線段BC的中點(diǎn)嗎?為什么?

(2)若圓環(huán)的寬度(兩圓半徑之差)為6cm,AB=5cm,BC=10cm,求小圓的半徑。

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案