19.下面的框圖表示解方程3x+20=4x-25的流程.第1步的依據(jù)是等式兩邊加(或減)同一個數(shù)(或式子),結果仍相等.

分析 根據(jù)等式的性質(zhì)判斷即可.

解答 解:解方程3x+20=4x-25的流程.第1步的依據(jù)是等式兩邊加(或減)同一個數(shù)(或式子),結果仍相等,
故答案為:等式兩邊加(或減)同一個數(shù)(或式子),結果仍相等

點評 此題考查了解一元一次方程,熟練掌握解方程的步驟是解本題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:填空題

9.某校為學生編號,設定末尾用1表示男生,用2表示女生.如果1608132表示“2016年入學的8班13號的同學是位女生”,那么2017年入學的1班37號男生的編號是1701371.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

10.在平面直角坐標系xOy中,點P的坐標為(x1,y1),點Q的坐標為(x2,y2),若a=|x1-x2|,b=|y1-y2|,則記作(P,Q)→{a,b }.
(1)已知(P,Q)→{a,b },且點P(1,1),點Q(4,3),求a,b的值;
(2)點P(0,-1),a=2,b=1,且(P,Q)→{a,b },求符合條件的點Q的坐標;
(3)⊙O的半徑為$\sqrt{5}$,點P在⊙O上,點Q(m,n)在直線y=-$\frac{1}{2}$x+$\frac{9}{2}$上,若(P,Q)→{a,b },且a=2k,b=k (k>0),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

7.圓錐的底面直徑為4cm,母線長為5cm,那么這個圓錐的側面展開圖的圓心角為度144.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

14.如表為某用戶銀行存折中2015年11月到2016年5月間代扣水費的相關數(shù)據(jù),其中扣繳水費最多的一次的金額為( 。
日期摘要  幣種存/取款金額  余額 操作員  備注
151101北京水費 RMB鈔-125.45 874.55010005B25   折
160101北京水費 RMB鈔-136.02 738.53010005Y03   折
160301北京水費 RMB鈔-132.36 606.17010005D05   折
160501北京水費 RMB鈔-128.59 477.5801000K19   折
A.738.53元B.125.45元C.136.02元D.477.58元

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

4.剪紙是我國的非物質(zhì)文化遺產(chǎn)之一,下列剪紙作品中是中心對稱圖形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

11.甲、乙兩人進行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.甲從中隨機抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機抽取一張.
(1)請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;
(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個游戲公平嗎?請用概率的知識加以解釋.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

8.已知∠AOB=150°,OD為∠AOB內(nèi)部的一條射線
(1)如圖(1),若∠BOC=60°,OD為∠AOB內(nèi)部的一條射線,∠COD=$\frac{1}{3}$∠BOC,OE平分∠AOB,求∠DOE的度數(shù).
(2)如圖(2),若OC、OD是∠AOB內(nèi)部的兩條射線,OM、ON分別平分∠AOD,∠BOC,且∠MOC≠∠NOD,求(∠AOC-∠BOD)/(∠MOC-∠NOD)的值.
(3)如圖(3),C1為射線OB的反向延長線上一點,將射線OB繞點O順時針以6°/s的速度旋轉,旋轉后OB對應射線為OB1,旋轉時間為t秒(0<t≤35),OE平分∠AOB1,OF為∠C1OB1的三等分線,∠C1OF=$\frac{1}{3}$∠C1OB1,若|∠C1OF-∠AOE|=30°,直接寫出t的值為9秒或15秒.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

9.如圖,在平面直角坐標系中,O 為坐標原點,P是反比例函數(shù)y=$\frac{12}{x}$(x>0)圖象上任意一點,以P為圓心,PO為半徑的圓與x軸交于點 A、與y軸交于點B,連接AB.
(1)求證:P為線段AB的中點;
(2)求△AOB的面積.

查看答案和解析>>

同步練習冊答案