【題目】如圖,在正方形ABCD中,EBC的中點,FCD上一點,且CFCD,下列結(jié)論:①∠BAE30°;②△ABE∽△AEF;③AEEF;④△ADF∽△ECF,其中正確的個數(shù)為(  )

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】

設(shè)CF=xCD=4x, DF=3xBE=EC=2x,進而可以證明△ABE∽△ECF得到ABEC=AEEF,AEB=EFC進而可以證明△ABE∽△AEF,AEEF,從而得到結(jié)論

∵在正方形ABCD,EBC的中點,FCD上一點,CF=CD,設(shè)CF=x,CD=4x,∴DF=3x,BE=EC=2x,∴ ABEC=BECF=21∵∠B=C=90°,∴△ABE∽△ECF,ABEC=AEEF,AEB=EFCBE=CE,ABAE=BEEF,

∵∠FEC+∠EFC=90°,AEB=EFC,∴AEB+∠FEC=90°,∴∠AEF=B=90°,∴△ABE∽△AEF,AEEF∴②③正確.

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①是一個長為2m,寬為2n的長方形紙片,將長方形紙片沿圖中虛線剪成四個形狀和大小完全相同的小長方形,然后拼成圖②所示的一個大正方形。

1)用兩種不同的方法表示圖②中小正方形(陰影部分)的面積:

方法一: ;

方法二: .

(2)(m+n),(mn) mn這三個代數(shù)式之間的等量關(guān)系為___

(3)應(yīng)用(2)中發(fā)現(xiàn)的關(guān)系式解決問題:若x+y=9,xy=14,求xy的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的一邊OAx軸的負半軸上,O是坐標原點,tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過點C,與AB交于點D,若COD的面積為20,則k的值等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一堤壩的坡角∠ABC=62°,坡面長度AB=25米(圖為橫截面),為了使堤壩更加牢固,一施工隊欲改變堤壩的坡面,使得坡面的坡角∠ADB=50°,則此時應(yīng)將壩底向外拓寬多少米?(結(jié)果保留到0.01米)(參考數(shù)據(jù):sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教室里的飲水機接通電源就進入自動程序,開機加熱時每分鐘上升10,加熱到100,停止加熱,水溫開始下降,此時水溫()與開機后用時(min)成反比例關(guān)系.直至水溫降至30,飲水機關(guān)機.飲水機關(guān)機后即刻自動開機,重復(fù)上述自動程序.若在水溫為30時,接通電源后,水溫y)和時間(min)的關(guān)系如圖,為了在上午第一節(jié)下課時(845)能喝到不超過50的水,則接通電源的時間可以是當天上午的

A720 B730 C745 D750

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程有唯一實數(shù)解,且反比例函數(shù)的圖象在每個象限內(nèi)的增大而增大,那么反比例函數(shù)的關(guān)系式為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,CEABE,弦ADCE延長線于點F,CFAF

1)求證:

2)若BC=8,tanDAC=,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮要利用廢紙板做一個三棱柱形狀的無蓋的筆筒,設(shè)計三棱柱的立體模型如圖所示.

(1)請畫出該立體模型的三視圖;

(2)該筆筒至少要用多少廢紙板?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,平分,,.線段的長度為:________;求線段的長度和的值.

查看答案和解析>>

同步練習(xí)冊答案