【題目】如圖,AD是⊙O的切線,切點為A,AB是⊙O的弦,過點B作BC∥AD,交⊙O于點C,連接AC,過點C作CD∥AB,交AD于點D,連接AO并延長交BC于點M,交過點C的直線于點P,且∠BCP=∠ACD.
(1)判斷直線PC與⊙O的位置關(guān)系,并說明理由.
(2)若AB=5,BC=10,求⊙O的半徑及PC的長.
【答案】(1)PC與⊙O相切;(2)r=3;PC=.
【解析】
(1)過C點作直徑CE,連接EB,由CE為直徑得∠E+∠BCE=90°,由AB∥DC得∠ACD=∠BAC,而∠BAC=∠E,∠BCP=∠ACD,所以∠E=∠BCP,于是∠BCP+∠BCE=90°,然后根據(jù)切線的判斷得到結(jié)論;
(2)根據(jù)切線的性質(zhì)得到OA⊥AD,而BC∥AD,則AM⊥BC,根據(jù)垂徑定理有BM=CM=BC=5,根據(jù)等腰三角形性質(zhì)有AC=AB=5,在Rt△AMC中根據(jù)勾股定理計算出AM的長度,設⊙O的半徑為r,則OC=r,OM=AM-r=5-r,在Rt△OCM中,根據(jù)勾股定理計算出r=3,由CE=2r,利用中位線性質(zhì)得BE的長度,然后判斷Rt△PCM∽Rt△CEB,根據(jù)相似比可計算出PC.
解:(1)PC與⊙O相切,理由為:
過C點作直徑CE,連接EB,如圖,
∵CE為直徑,
∴∠EBC=90°,即∠E+∠BCE=90°,
∵AB∥DC,
∴∠ACD=∠BAC,
∵∠BAC=∠E,∠BCP=∠ACD.
∴∠E=∠BCP,
∴∠BCP+∠BCE=90°,即∠PCE=90°,
∴CE⊥PC,
∴PC與⊙O相切;
(2)∵AD是⊙O的切線,切點為A,
∴OA⊥AD,
∵BC∥AD,
∴AM⊥BC,
∴BM=CM=BC=5,
∴AC=AB=5,
在Rt△AMC中,AM==5,設⊙O的半徑為r,則OC=r,OM=AM﹣r=5﹣r,
在Rt△OCM中,OM2+CM2=OC2,即(5﹣r)2+52=r2,
解得:r=3;
∴CE=2r=6,OM=5﹣r=2,
∴BE=2OM=4,
∵∠E=∠MCP,
∴Rt△PCM∽Rt△CEB,
∴=,
即=,
∴PC=.
故答案為:(1)PC與⊙O相切;(2)r=3;PC=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的頂點坐標分別為A(1,3),B(4,2),C(2,1).
(1)作出與△ABC關(guān)于x軸對稱的△A1B1C1.
(2)以原點O為位似中心,在原點的另一個側(cè)畫出△A2B2C2.使=,并寫出A2、B2、C2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地發(fā)生8.1級地震,震源深度20千米.救援隊火速趕往災區(qū)救援,探測出某建筑物廢墟下方點C處有生命跡象.在廢墟一側(cè)某面上選兩探測點A、B,AB相距2米,探測線與該面的夾角分別是30°和45°(如圖).試確定生命所在點C與探測面的距離.(參考數(shù)據(jù)≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B、C、P四點均在邊長為1的小正方形網(wǎng)格格點上.
(1)判斷△PBA與△ABC是否相似,并說明理由;
(2)求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,和的平分線相交于點,過點作交于點,交于點,過點作于點,某班學生在一次數(shù)學活動課中,探索出如下結(jié)論,其中錯誤的是( )
A.B.點到各邊的距離相等
C.D.設,,則
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四條直線l1:y1=x,l2:y2=x,l3:y3=﹣x,l4:y4=﹣x,OA1=1,過點A1作A1A2⊥x軸,交l1于點A2,再過點A2作A2A3⊥l1交l2于點A3,再過點A3作A3A4⊥l2交y軸于點A4…,則點A2017坐標為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點P在斜邊AB上 (不與A、B重合),過P作PE⊥AC,PF⊥BC,垂足分別是E、F,連接EF.隨著P點在邊AB上位置的改變,EF的長度是否也會改變?若不變,請你求EF的長度;若有變化,請你求EF的變化范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標金額的和返還相應價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.
(1)該顧客至少可得到 元購物券,至多可得到 元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+2與坐標軸相交于A,B兩點,與反比例函數(shù)y=在第一象限交點C(1,a).求:
(1)反比例函數(shù)的解析式;
(2)△AOC的面積;
(3)不等式x+2﹣<0的解集(直接寫出答案)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com