△ABC中三邊之比為1:1:
2
,則△ABC形狀一定不是( 。
A.等腰三角形B.直角三角形
C.等腰直角三角形D.銳角三角形
∵在△ABC中三邊之比為1:1:
2
,
∴AB=CB,
故A選項正確;
∴△ABC是等腰三角形,
∴AB2+BC2=AC2,AB=BC,
∴△ABC是直角三角形;
故B選項正確;
∴△ABC是等腰直角三角形;
故C選項正確;
故選D.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

已知:如圖所示,△ABC與△ABD中,∠C=∠D=90°,要使△ABC≌△ABD(HL)成立,還需要加的條件是( 。
A.∠BAC=∠BADB.BC=BD或AC=AD
C.∠ABC=∠ABDD.AB為公共邊

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,BE⊥AC,CF⊥AB,垂足分別是E.F,若BE=CF,則圖中全等三角形有( 。
A.1對B.2對C.3對D.4對

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

小明將一副三角板按如圖所示擺放在一起,發(fā)現(xiàn)只要知道AB,BD,DC,CA四邊中的其中一邊的長就可以求出其他各邊的長,若已知AB=2,則CD的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠ACB=90°,∠A=60°,AC=3,點D是邊AB上的動點(點D與點A、B不重合),過點D作DE⊥AB交射線AC于E,連接BE,點F是BE的中點,連接CD、CF、DF.
(1)當點E在邊AC上(點E與點C不重合)時,設AD=x,CE=y.
①直接寫出y關于x的函數(shù)關系式及定義域;
②求證:△CDF是等邊三角形;
(2)如果BE=2
7
,請直接寫出AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

證明:直角三角形斜邊上的中線等于斜邊的一半.(要求畫圖并寫出已知、求證以及證明過程)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,已知AB=AC,∠BAC=90°,BC=8cm,直線CM⊥BC,動點D從點C開始沿射線CB方向以每秒2厘米的速度運動,動點E也同時從點C開始在直線CM上以每秒1厘米的速度運動,連接AD、AE,設運動時間為t秒.
(1)求AB的長;
(2)當t為多少時,△ABD的面積為10cm2?
(3)當t為多少時,△ABD≌△ACE,并簡要說明理由(可在備用圖中畫出具體圖形).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在Rt△ABC中,∠ACB=90°,AB=10,CD是AB邊上的中線,則CD的長是( 。
A.20B.10C.5D.
5
2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在矩形ABCD中,點E是邊AD上一點,BC=2AB,AD=BE,那么∠ECD=______度.

查看答案和解析>>

同步練習冊答案