【題目】如圖,∠AGF=∠ABC,∠1+∠2=180°,
(1)求證;BF∥DE.
(2)如果DE⊥AC于點(diǎn)E,∠2=150°,求∠AFG的度數(shù).
【答案】(1)證明見(jiàn)解析;(2)60°
【解析】試題分析:(1)根據(jù)平行線(xiàn)的判定推知BC∥GF;然后由平行線(xiàn)的性質(zhì)可得∠3=∠1,再由∠1+∠2=180°,可得∠2+∠3=180°,即可證得結(jié)論;(2)由DE⊥AC,可得∠DEC=90,再由∠2=150,可得∠C=60,因BC∥FG,即可得∠AFG=∠C=60.
試題解析:
(1)∵∠AGF=∠ABC,
∴BC∥GF(同位角相等,兩直線(xiàn)平行),
∴∠1=∠3;
又∵∠1+∠2=180°,
∴∠2+∠3=180°,
∴BF∥DE;
(2)∵DE⊥AC
∴∠DEC=90
∵∠2=150
∴∠C=60
∵BC∥FG
∴∠AFG=∠C=60
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明因流感在醫(yī)院觀察,要掌握他在一周內(nèi)的體溫是否穩(wěn)定,則醫(yī)生需了解小明7天體溫的( 。
A. 眾數(shù) B. 方差 C. 平均數(shù) D. 頻數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四個(gè)說(shuō)法中:①在同一直線(xiàn)上的4點(diǎn)A、B、C、D只能表示出5條不同的線(xiàn)段;②經(jīng)過(guò)兩點(diǎn)有一條直線(xiàn),并且只有一條直線(xiàn);③兩條直線(xiàn)相交,有且只有一個(gè)交點(diǎn);④在同一平面內(nèi),兩條直線(xiàn)的位置關(guān)系只有相交和平行.正確的是( )
A. ②③ B. ①④ C. ②③④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】最大的負(fù)整數(shù)和絕對(duì)值最小的有理數(shù)分別是( )
A. 0 ,﹣1 B. 0 , 0 C. ﹣1 , 0 D. ﹣1 ,﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用尺規(guī)作圖,已知三邊作三角形,用到的基本作圖是(。
A. 作一個(gè)角等于已知角
B. 作已知直線(xiàn)的垂線(xiàn)
C. 作一條線(xiàn)段等于已知線(xiàn)段
D. 作角的平分線(xiàn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】劉聰和爸爸、媽媽到人民公園游玩,回到家后,他利用平面直角坐標(biāo)系畫(huà)出了公園的景區(qū)地圖,如圖所示.可是她忘記了在圖中標(biāo)出原點(diǎn)和x軸.y軸.只知道游樂(lè)園D的坐標(biāo)為(2,-2),
請(qǐng)你幫她畫(huà)出平面直角坐標(biāo)系,并寫(xiě)出其他各景點(diǎn)A、B、C、E、F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD,P為射線(xiàn)AB上的一點(diǎn),以BP為邊作正方形BPEF,使點(diǎn)F在線(xiàn)段CB的延長(zhǎng)線(xiàn)上,連接EA、EC.
(1)如圖1,若點(diǎn)P在線(xiàn)段AB的延長(zhǎng)線(xiàn)上,求證:EA=EC;
(2)若點(diǎn)P在線(xiàn)段AB上.
①如圖2,連接AC,當(dāng)P為AB的中點(diǎn)時(shí),判斷△ACE的形狀,并說(shuō)明理由;
②如圖3,設(shè)AB=a,BP=b,當(dāng)EP平分∠AEC時(shí),求a:b及∠AEC的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com