【題目】如圖所示的圖象反映的過程是:小強星期天從家跑步去體育場,在那里鍛煉了一會兒后又走到文具店去買筆,然后步行回家,其中x表示時間,y表示小強離家的距離,根據(jù)圖象回答下列問題.
(1)體育場離小強家有多遠?小強從家到體育場用了多長時間?
(2)體育場距文具店多遠?
(3)小強在文具店逗留了多長時間?
(4)小強從文具店回家的平均速度是多少?
【答案】(1)體育場離陳歡家2.5千米,小剛在體育場鍛煉了15分鐘;(2)體育場離文具店1千米;(3)小剛在文具店停留20分;(4)小強從文具店回家的平均速度是千米/分
【解析】
(1)根據(jù)觀察函數(shù)圖象的縱坐標,可得距離,觀察函數(shù)圖象的橫坐標,可得時間;
(2)根據(jù)觀察函數(shù)圖象的橫坐標,可得體育場與文具店的距離;
(3)觀察函數(shù)圖象的橫坐標,可得在文具店停留的時間;
(4)用回家的路程除以回家的時間即可.
(1)由縱坐標看出體育場離陳歡家2.5千米,由橫坐標看出小剛在體育場鍛煉了15分鐘;
(2)由縱坐標看出體育場離文具店3.5-2.5=1(千米);
(3)由橫坐標看出小剛在文具店停留55-35=20(分);
(4)小強從文具店回家的平均速度是3.5÷(125-55)=(千米/分)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點O到△ABC的兩邊AB、AC所在直線的距離相等,且OB=OC.
(1)如圖1,若點O在BC上,求證:AB=AC;
(2)如圖2,若點O在△ABC的內(nèi)部,求證:AB=AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形AOCD、正方形A1CC1D1、正方形A2C1C2D2的頂點A、A1、A2和O、C、C1、C2分別在一次函數(shù)y=x+1的圖象和x軸上,若正比例函數(shù)y=kx則過點D5,則系數(shù)k的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)寫出圖1中函數(shù)圖象的解析式y1=_________________.
(2)如圖2,過直線y=3上一點P(m,3)作x軸的垂線交y1的圖象于點C,交y= -x- 1于點D.
①當m>0時,試比較PC與PD的大小,并證明你的結(jié)論.
②若CD<3時,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點C(0,-2),直線l:y=kx-2k無論k取何值,直線總過定點B,
(1)求定點B的坐標.
(2)如圖1,若點D為直線BC上(點(-1,-3)除外)一動點,過點D作x軸的垂線交y= - 3于點E,點F在直線BC上,距離D點為個單位,D點橫坐標為t,ΔDEF的面積為S,求S與t函數(shù)關(guān)系式.
(3)若直線BC關(guān)于x軸對稱后再向上平移5個單位得到直線B1C1,如圖2,點G(1,a)和H(6,b)是直線B1C1上兩點,點P(m,n)為第一象限內(nèi)(G、H兩點除外)的一點,,且mn=6,直線PG和PH為分別交y軸于點MN兩點,問線段OM、ON有什么數(shù)量關(guān)系,請證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,正比例函數(shù)y=kx的圖象經(jīng)過點A,
(1)請你求出該正比例函數(shù)的解析式;
(2)若這個函數(shù)的圖象還經(jīng)過點B(m,m+3),請你求出m的值;
(3)請你判斷點P(﹣,1)是否在這個函數(shù)的圖象上,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿著過AB中點D的直線折疊,使點A落在BC邊上的A1處,稱為第1次操作,折痕DE到BC的距離記為h1 , 還原紙片后,再將△ADE沿著過AD中點D1的直線折疊,使點A落在DE邊上的A2處,稱為第2次操作,折痕D1E1到BC的距離記為h2;按上述方法不斷操作下去…,經(jīng)過第2017次操作后得到的折痕D2016E2016 , 到BC的距離記為h2017;若h1=1,則h2017的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料: 如圖1,圓的概念:在平面內(nèi),線段PA繞它固定的一個端點P旋轉(zhuǎn)一周,另一個端點A所形成的圖形叫做圓.就是說,到某個定點等于定長的所有點在同一個圓上,圓心在P(a,b),半徑為r的圓的方程可以寫為:(x﹣a)2+(y﹣b)2=r2 , 如:圓心在P(2,﹣1),半徑為5的圓方程為:(x﹣2)2+(y+1)2=25
(1)填空: ①以A(3,0)為圓心,1為半徑的圓的方程為;
②以B(﹣1,﹣2)為圓心, 為半徑的圓的方程為 .
(2)根據(jù)以上材料解決下列問題: 如圖2,以B(﹣6,0)為圓心的圓與y軸相切于原點,C是⊙B上一點,連接OC,作BD⊥OC垂足為D,延長BD交y軸于點E,已知sin∠AOC= .
①連接EC,證明EC是⊙B的切線;
②在BE上是否存在一點P,使PB=PC=PE=PO?若存在,求P點坐標,并寫出以P為圓心,以PB為半徑的⊙P的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com