【題目】如圖,FBD上,BC、AD相交于點E,且ABCDEF,

(1)圖中有哪幾對位似三角形,選其中一對加以證明;

(2)若AB=2,CD=3,求EF的長.

【答案】1)一共有3對;

2EF=

【解析】

試題(1)利用相似三角形的判定方法以及位似圖形的性質(zhì)進而得出答案;

2)利用比例的性質(zhì)以及相似三角形的性質(zhì)進而求出==,求出EF即可

試題解析:(1∵AB∥CD∥EF

∴△DFE∽△DBA,△BFE∽△BDC,△AEB∽△DEC,

且對應邊都交于一點,

∴△DFE△DBA,△BFE△BDC△AEB△DEC都是位似圖形,

一共有3對;

2∵△BFE∽△BDC,△AEB∽△DECAB=2,CD=3

==,

==

解得:EF=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(2017湖北省鄂州市)小明想要測量學校食堂和食堂正前方一棵樹的高度,他從食堂樓底M處出發(fā),向前走3米到達A處,測得樹頂端E的仰角為30°,他又繼續(xù)走下臺階到達C處,測得樹的頂端E的仰角是60°,再繼續(xù)向前走到大樹底D處,測得食堂樓頂N的仰角為45°.已知A點離地面的高度AB=2米,∠BCA=30°,且BC、D三點在同一直線上.

(1)求樹DE的高度;

(2)求食堂MN的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的交點為A、DAD的右側),與y軸的交點為C,且A4,0),C0,﹣3),對稱軸是直線x=1

1)求二次函數(shù)的解析式;

2)若M是第四象限拋物線上一動點,且橫坐標為m,設四邊形OCMA的面積為s.請寫出sm之間的函數(shù)關系式,并求出當m為何值時,四邊形OCMA的面積最大;

3)設點Bx軸上的點,P是拋物線上的點,是否存在點P,使得以A,BC,P四點為頂點的四邊形為平行四邊形?若存在,直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yax2+bx+1的頂點為D,與x軸正半軸交于AB兩點,AB左,與y軸正半軸交于點C,當△ABD和△OBC均為等腰直角三角形(O為坐標原點)時,b的值為( 。

A. 2 B. 2或﹣4 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一筆直的海岸線l上有AB兩個觀測站,C離海岸線l的距離(CD的長)2,從A測得船C在北偏東45°的方向,從B測得船C在北偏東22.5°的方向,則AB的長(  )

A. 2 km B. (2)km C. (42) km D. (4) km

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某小區(qū)的一個健身器材,已知BC=0.15m,AB=2.70m,BOD=70°,求端點A到地面CD的距離(精確到0.1m).(參考數(shù)據(jù):sin70°0.94,cos70°0.34,tan70°2.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了預防流感,某學校對教室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(mg)與時間x(min)成正比例,藥物燃燒完后,y與x成反比例(如圖所示)。現(xiàn)測得藥物8min燃畢,此時室內(nèi)空氣中每立方米的含藥量為6mg。研究表明,當空氣中每立方米的含藥量不低于3mg才有效,那么此次消毒的有效時間是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明同學三次到某超市購買A、B兩種商品,其中僅有一次是有折扣的,購買數(shù)量及消費金額如下表:

類別

次數(shù)

購買A商品數(shù)量(件)

購買B商品數(shù)量(件)

消費金額(元)

第一次

4

5

320

第二次

2

6

300

第三次

5

7

258

解答下列問題:

(1)第  次購買有折扣;

(2)求A、B兩種商品的原價;

(3)若購買A、B兩種商品的折扣數(shù)相同,求折扣數(shù);

(4)小明同學再次購買A、B兩種商品共10件,在(3)中折扣數(shù)的前提下,消費金額不超過200元,求至少購買A商品多少件.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣51),B(﹣22),C(﹣1,4),請按下列要求畫圖:

1)將△ABC先向右平移4個單位長度、再向下平移1個單位長度,得到△A1B1C1,畫出△A1B1C1;

2)畫出與△ABC關于原點O成中心對稱的△A2B2C2,并直接寫出點A2的坐標.

查看答案和解析>>

同步練習冊答案