如圖,已知在平面直角坐標(biāo)系中,平行四邊形ABCD頂點(diǎn)A(0,0),C(10,4),直線y=ax-2a-1將平行四邊形ABCD分成面積相等的兩部分,求a的值.
分析:連接AC、BD,AC與BD相交于點(diǎn)M,過(guò)點(diǎn)M作ME⊥x軸于點(diǎn)E,過(guò)點(diǎn)C作CF⊥x軸于點(diǎn)F,由直線將平行四邊形分成面積相等的兩部分,得到此直線過(guò)平行四邊形對(duì)角線的交點(diǎn)M,接下來(lái)求M的坐標(biāo),由平行四邊形的對(duì)角線互相平分,得到M為AC的中點(diǎn),再由ME與CF都與x軸垂直,得到ME與CF平行,可得出兩對(duì)同位角相等,根據(jù)兩對(duì)對(duì)應(yīng)角相等的兩三角形相似,可得三角形AME與三角形ACF相似,由M為AC的中點(diǎn)得到相似三角形的相似比為1:2,可得E為AF的中點(diǎn),由C的坐標(biāo)得到AF與CF的長(zhǎng),又ME為三角形ACF的中位線,根據(jù)中位線定理得到ME為CF的一半,求出ME的長(zhǎng),由AE為AF的一半,求出AE的長(zhǎng),確定出M的坐標(biāo),把M的坐標(biāo)代入直線方程中,得到關(guān)于a的方程,求出方程的解即可得到a的值.
解答:解:連接AC、BD,AC與BD相交于點(diǎn)M,過(guò)點(diǎn)M作ME⊥x軸于點(diǎn)E,過(guò)點(diǎn)C作CF⊥x軸于點(diǎn)F,

∵C(10,4),
∴AF=10,CF=4,…(2分)
∵四邊形ABCD為平行四邊形,
∴AM=CM,即
AM
AC
=
1
2
,
∵M(jìn)E⊥x軸,CF⊥x軸,
∴∠MEA=∠CFA=90°,
∴ME∥CF,
∴∠AME=∠ACF,∠AEM=∠AFC,
∴△AME∽△ACF,
AM
AC
=
AE
AF
=
1
2
,即E為AF的中點(diǎn),
∴ME為△AFC的中位線,…(4分)
∴AE=
1
2
AF=5,ME=
1
2
CF=2,
∴M(5,2),…(6分)
∵直線y=ax-2a-1將平行四邊形ABCD分成面積相等的兩部分,
∴直線y=ax-2a-1經(jīng)過(guò)點(diǎn)M,…(8分)
將M(5,2)代入y=ax-2a-1得:a=1.…(9分)
點(diǎn)評(píng):此題屬于一次函數(shù)的綜合題,涉及的知識(shí)有:平行四邊形的性質(zhì),相似三角形的判定與性質(zhì),平行線的性質(zhì),三角形中位線定理,其中根據(jù)題意得出直線過(guò)平行四邊形的中心M是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)為A(-3,7),
B(1,5),C(-5,3).
(1)將△ABC向下平移3個(gè)單位長(zhǎng)度,得到△A′B′C′,再向右平移5個(gè)單位長(zhǎng)度,得到△A″B″C″.在圖中分別作出△A′B′C′,△A″B″C″;
(2)分別寫(xiě)出點(diǎn)A″、B″、C″的坐標(biāo);
(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在平面直角坐標(biāo)系xOy中,直角梯形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,OC=3,過(guò)點(diǎn)B作BD⊥BC,交OA于點(diǎn)D.將∠DBC繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn),角的兩精英家教網(wǎng)邊分別交y軸的正半軸、x軸的正半軸于點(diǎn)E和F.
(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線的解析式;
(2)當(dāng)BE經(jīng)過(guò)(1)中拋物線的頂點(diǎn)時(shí),求CF的長(zhǎng);
(3)在拋物線的對(duì)稱軸上取兩點(diǎn)P、Q(點(diǎn)Q在點(diǎn)P的上方),且PQ=1,要使四邊形BCPQ的周長(zhǎng)最小,求出P、Q兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在平面直角坐標(biāo)系中,直角梯形ABCD,AB∥CD,AD=CD,∠ABC=90°,A、B在x軸上,點(diǎn)D在y軸上,若tan∠OAD=
4
3
,B點(diǎn)的坐標(biāo)為(5,0).
(1)求直線AC的解析式;
(2)若點(diǎn)Q、P分別從點(diǎn)C、A同時(shí)出發(fā),點(diǎn)Q沿線段CA向點(diǎn)A運(yùn)動(dòng),點(diǎn)P沿線段AB向點(diǎn)B運(yùn)動(dòng),Q點(diǎn)的速度為每秒
5
個(gè)單位長(zhǎng)度,P點(diǎn)的速度為每秒2個(gè)單位長(zhǎng)度,設(shè)運(yùn)動(dòng)時(shí)間為t秒,△PQE的面積為S,求S與t的函數(shù)關(guān)系式(請(qǐng)直接寫(xiě)出自變量t的取值范圍);
(3)在(2)的條件下,過(guò)P點(diǎn)作PQ的垂線交直線CD于點(diǎn)M,在P、Q運(yùn)動(dòng)的過(guò)程中,是否在平面內(nèi)有一點(diǎn)N,使四邊形QPMN為正方形?若存在,求出N點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•樊城區(qū)模擬)如圖,已知在平面直角坐標(biāo)系xOy中,一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=
m
x
(m≠0)的圖象相交于A、B兩點(diǎn),且點(diǎn)B的縱坐標(biāo)為-
1
2
,過(guò)點(diǎn)A作AC⊥x軸于點(diǎn)C,AC=1,OC=2.求:
(1)求反比例函數(shù)的解析式和一次函數(shù)的解析式;
(2)求不等式kx+b-
m
x
<0的解集(請(qǐng)直接寫(xiě)出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在平面直角坐標(biāo)系中,△ABC的位置如圖所示
(1)把△ABC平移后,三角形某一邊上一點(diǎn)P(x,y)的對(duì)應(yīng)點(diǎn)為P′(x+4,y-2),平移后所得三角形的各頂點(diǎn)的坐標(biāo)分別為:A1
(3,2)
(3,2)
、B1
(0,-3)
(0,-3)
、C1
(5,-1)
(5,-1)
;
(2)在圖上畫(huà)出平移后的三角形△A1B1C1
(3)請(qǐng)計(jì)算△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案