【題目】如圖,A、B是圓O上的兩點(diǎn),∠AOB=120°,C是劣弧的中點(diǎn).
(1)試判斷四邊形OACB的形狀,并說明理由;
(2)延長OA至P,使得AP=OA,連接PC,若PC為,求BC長.
【答案】(1)四邊形OACB是菱形,見解析;(2)3
【解析】
(1)首先連接OC,由A、B是圓O上的兩點(diǎn),∠AOB=120°,C是劣弧的中點(diǎn),易證得△AOC與△BOC都是等邊三角形,則可得AC=OA=OC=OB=BC,繼而證得四邊形OACB是菱形.
(2)由AP=OA,易證得△OPC是直角三角形,然后利用勾股定理求得答案.
解:(1)四邊形OACB是菱形.
理由:連接OC,
∵∠AOB=120°,C是劣弧的中點(diǎn),
∴∠AOC=∠BOC=∠AOB=60°,
∵OA=OC=OB,
∴△AOC與△BOC都是等邊三角形,
∴AC=OA=OC=OB=BC,
∴四邊形OACB是菱形.
(2)∵AP=OA,AC=OA,
∴AP=AC,
∴∠P=∠ACP=∠OAC=30°,
∴∠OCP=90°,
設(shè)圓O的半徑為x,則OC=x,OP=2x
∴,
∴x=3
∵四邊形OACB是菱形.
∴BC=3
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交x軸于點(diǎn)A(a,0)和B(b,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個(gè)結(jié)論:
①點(diǎn)C的坐標(biāo)為(0,m);
②當(dāng)m=0時(shí),△ABD是等腰直角三角形;
③若a=-1,則b=4;
④拋物線上有兩點(diǎn)P(,)和Q(,),若<1<,且+>2,則>.
其中結(jié)論正確的序號(hào)是( )
A.①②B.①②③C.①②④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的邊長為,點(diǎn)是上一動(dòng)點(diǎn)(不與重合),點(diǎn)是上一動(dòng)點(diǎn),則面積的最小值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,我市某景區(qū)內(nèi)有一條自西向東的筆直林蔭路經(jīng)過景點(diǎn)A、B,現(xiàn)市政決定開發(fā)景點(diǎn)C,經(jīng)考察人員測量,景點(diǎn)A位于景點(diǎn)C的在南偏西60°方向,景點(diǎn)B位于景點(diǎn)C的西南方向,A、B兩景點(diǎn)之間相距380米,現(xiàn)準(zhǔn)備由景點(diǎn)C向該林萌路修建一條距離最短的公路,不考慮其它因素,求出這條公路的長?(結(jié)果精確到0.1,參考數(shù)據(jù):≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在矩形ABCD對角線AC上由A向C運(yùn)動(dòng),且BC=2,∠ACB=30°,連結(jié)EF,過點(diǎn)E作EF⊥DE,交BC于點(diǎn)F(當(dāng)點(diǎn)F與點(diǎn)C重合時(shí),點(diǎn)E也停止運(yùn)動(dòng))
(1)如圖1,當(dāng)AC平分角∠DEF時(shí),求AE的長度;
(2)如圖2,連結(jié)DF,與AC交于點(diǎn)G,若DF⊥AC時(shí),求四邊形DEFC的面積;
(3)若點(diǎn)E分AC為1:2兩部分時(shí),求BF:FC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙C 經(jīng)過原點(diǎn)且與兩坐標(biāo)軸分別交于點(diǎn) A 與點(diǎn) B,點(diǎn) B 的坐標(biāo)為(﹣,0),M 是圓上一點(diǎn),∠BMO=120°.⊙C 圓心 C 的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△AOB是等腰直角三角形,∠AOB=90°,點(diǎn)A(2,1).
(1)求點(diǎn)B的坐標(biāo);
(2)求經(jīng)過A、O、B三點(diǎn)的拋物線的函數(shù)表達(dá)式;
(3)在(2)所求的拋物線上,是否存在一點(diǎn)P,使四邊形ABOP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,為上一點(diǎn),以為圓心,長為半徑作圓,與相切于點(diǎn),過點(diǎn)作交的延長線于點(diǎn),且.
(1)求證:為的切線;
(2)若, ,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),拋物線交軸于、(左右)兩點(diǎn),交軸于點(diǎn),,.
(1)求拋物線的解析式;
(2)點(diǎn)為第二象限拋物線上一點(diǎn),連接、,交軸于點(diǎn),過點(diǎn)做軸的垂線,垂足為點(diǎn),過點(diǎn)做直線軸,在軸上方直線上取一點(diǎn),連接,使,連接交軸于點(diǎn),當(dāng)時(shí),求線段的長;
(3)在(2)的條件下,點(diǎn)為第二象限拋物線上的一點(diǎn),連接,過點(diǎn)做于點(diǎn),連接,線段、分別交線段于點(diǎn)、,當(dāng)時(shí),求的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com