(2012•株洲)如圖,在矩形ABCD中,AB=6,BC=8,沿直線MN對(duì)折,使A、C重合,直線MN交AC于O.
(1)求證:△COM∽△CBA;     
(2)求線段OM的長(zhǎng)度.
分析:(1)根據(jù)A與C關(guān)于直線MN對(duì)稱得到AC⊥MN,進(jìn)一步得到∠COM=90°,從而得到在矩形ABCD中∠COM=∠B,最后證得△COM∽△CBA;
(2)利用上題證得的相似三角形的對(duì)應(yīng)邊成比例得到比例式后即可求得OM的長(zhǎng).
解答:(1)證明:∵沿直線MN對(duì)折,使A、C重合
∴A與C關(guān)于直線MN對(duì)稱,
∴AC⊥MN,
∴∠COM=90°.
在矩形ABCD中,∠B=90°,
∴∠COM=∠B,
又∵∠ACB=∠ACB,
∴△COM∽△CBA;

(2)解:∵在Rt△CBA中,AB=6,BC=8,
∴AC=10,
∴OC=5,
∵△COM∽△CBA,
OC
BC
=
OM
AB
,
∴OM=
15
4
點(diǎn)評(píng):本題考查了相似三角形的判定與性質(zhì)、勾股定理及矩形的性質(zhì),解題的關(guān)鍵是仔細(xì)分析并找到相等的角來證得相似三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•株洲)如圖,一次函數(shù)y=-
12
x+2
分別交y軸、x軸于A、B兩點(diǎn),拋物線y=-x2+bx+c過A、B兩點(diǎn).
(1)求這個(gè)拋物線的解析式;
(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個(gè)拋物線于N.求當(dāng)t取何值時(shí),MN有最大值?最大值是多少?
(3)在(2)的情況下,以A、M、N、D為頂點(diǎn)作平行四邊形,求第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•株洲)如圖,已知直線a∥b,直線c與a、b分別交于A、B;且∠1=120°,則∠2=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•株洲)如圖,已知拋物線與x軸的一個(gè)交點(diǎn)A(1,0),對(duì)稱軸是x=-1,則該拋物線與x軸的另一交點(diǎn)坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•株洲)如圖,直線x=t(t>0)與反比例函數(shù)y=
2
x
,y=
-1
x
的圖象分別交于B、C兩點(diǎn),A為y軸上的任意一點(diǎn),則△ABC的面積為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•株洲)如圖,已知AD為⊙O的直徑,B為AD延長(zhǎng)線上一點(diǎn),BC與⊙O切于C點(diǎn),∠A=30°.
求證:(1)BD=CD;
(2)△AOC≌△CDB.

查看答案和解析>>

同步練習(xí)冊(cè)答案