如圖,正方形BCD中,點E,F分別在AB,BC上,AF=DE,AF和DE相交于點G
(1)觀察圖形,寫出圖中所有與∠AED相等的角;
(2)選擇圖中與∠AED相等的任意一個角,并加以證明。
科目:初中數學 來源: 題型:
如圖,多邊形的各頂點都在方格紙的格點(橫豎格子線的交錯點)上,這樣的多邊形稱為格點多邊形,它的面積S可用公式(
是多邊形內的格點數,
是多邊形邊界上的格點數)計算,這個公式稱為“皮克定理”�,F有一張方格紙共有200個格點,畫有一個格點多邊形,它的面積S=40.
(1)這個格點多邊形邊界上的格點數= (用含
的代數式表示);
(2)設該格點多邊形外的格點數為,則
=
查看答案和解析>>
科目:初中數學 來源: 題型:
類比等腰三角形的定義,我們定義:有一組鄰邊相等的凸四邊形叫做“等鄰邊四邊形”。
(1)概念理解
如圖1,在四邊形ABCD中,添加一個條件,使得四邊形ABCD是“等鄰邊四邊形”,請寫出你添加的一個條件;2-1-c-n-j-y
(2)問題探究
①小紅猜想:對角線互相平分的“等鄰邊四邊形”是菱形,她的猜想正確嗎?請說明理由;
②如圖2,小紅畫了一個Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并將Rt△ABC沿∠B的平分線BB’方向平移得到△A’B’C’,連結AA’,BC’。小紅要使平移后的四邊形ABC’A’是“等鄰邊四邊形”,應平移多少距離(即線段BB’的長)?
(3)應用拓展
如圖3,“等鄰邊四邊形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD為對角線,AC=AB。試探究BC,CD,BD的數量關系。
查看答案和解析>>
科目:初中數學 來源: 題型:
圖,在△ABC中,AB=AC.分別以B、C為圓心,BC長為半徑在BC下方畫弧,設兩弧交于點D,與AB、AC的延長線分別交于點E、F,連接AD、BD、CD
(1)求證:AD平分∠BAC;
(2)若BC=6,∠BAC=50°,求、
的長度之和(結果保留
).
查看答案和解析>>
科目:初中數學 來源: 題型:
在平面直角坐標系中,以點、
、
為頂點的三角形向上平移3個單位,得到△
(點
分別為點
的對應點),然后以點
為中心將△
順時針旋轉
,得到△
(點
分別是點
的對應點),則點
的坐標是
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com