【題目】如圖,正方形ABCD中,點(diǎn)E、F、H分別是AB、BC、CD的中點(diǎn),CE、DF交于G,連接AG、HG.下列結(jié)論:①CE⊥DF;②AG=DG;③∠CHG=∠DAG;④2HG=AD.正確的有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
【答案】C
【解析】
連接AH,由四邊形ABCD是正方形與點(diǎn)E、F、H分別是AB、BC、CD的中點(diǎn),易證得△BCE≌△CDF與△ADH≌△DCF,根據(jù)全等三角形的性質(zhì),易證得CE⊥DF與AH⊥DF,根據(jù)垂直平分線的性質(zhì),即可證得AG=AD,由直角三角形斜邊上的中線等于斜邊的一半,即可證得2HG=AD,根據(jù)等腰三角形的性質(zhì),即可得∠CHG=∠DAG.則問題得解.
∵四邊形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=90°,
∵點(diǎn)E、F、H分別是AB、BC、CD的中點(diǎn),
∴BE=CF,
在△BCE與△CDF中
,
∴△BCE≌△CDF,(SAS),
∴∠ECB=∠CDF,
∵∠BCE+∠ECD=90°,
∴∠ECD+∠CDF=90°,
∴∠CGD=90°,
∴CE⊥DF,故①正確;
在Rt△CGD中,H是CD邊的中點(diǎn),
∴HG=CD=AD,故④正確;
連接AH,
同理可得:AH⊥DF,
∵HG=HD=CD,
∴DK=GK,
∴AH垂直平分DG,
∴AG=AD,故②錯(cuò)誤;
∴∠DAG=2∠DAH,
同理:△ADH≌△DCF,
∴∠DAH=∠CDF,
∵GH=DH,
∴∠HDG=∠HGD,
∴∠GHC=∠HDG+∠HGD=2∠CDF,
∴∠CHG=∠DAG.故③正確.
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小昊遇到這樣一個(gè)問題:如圖1,在△ABC中,∠ACB=90°,BE是AC邊上的中線,點(diǎn)D在BC邊上,CD:BD=1:2,AD與BE相交于點(diǎn)P,求的值.
小昊發(fā)現(xiàn),過點(diǎn)A作AF∥BC,交BE的延長線于點(diǎn)F,通過構(gòu)造△AEF,經(jīng)過推理和計(jì)算能夠使問題得到解決(如圖2).請回答:的值為 .
參考小昊思考問題的方法,解決問題:
如圖 3,在△ABC中,∠ACB=90°,點(diǎn)D在BC的延長線上,AD與AC邊上的中線BE的延長線交于點(diǎn)P,DC:BC:AC=1:2:3 .
(1)求的值;
(2)若CD=2,則BP=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】邊長為1的正的頂點(diǎn)在原點(diǎn),點(diǎn)在軸負(fù)半軸上,正方形邊長為2,點(diǎn)在軸正半軸上,動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿著的邊按逆時(shí)針方向運(yùn)動(dòng),動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿著正方形的邊也按逆時(shí)針方向運(yùn)動(dòng),點(diǎn)比點(diǎn)遲1秒出發(fā),則點(diǎn)運(yùn)動(dòng)2016秒后,則的值是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(3,4),點(diǎn)B為直線x=1上的動(dòng)點(diǎn),設(shè)B(-1,y).
(1)如圖①,若△ABO是等腰三角形且AO=AB時(shí),求點(diǎn)B的坐標(biāo);
(2)如圖②,若點(diǎn)C(x,0)且-1<x<3,BC⊥AC垂足為點(diǎn)C;
①當(dāng)x=0時(shí),求tan∠BAC的值;
②若AB與y軸正半軸的所夾銳角為α,當(dāng)點(diǎn)C在什么位置時(shí)tanα的值最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某校七年級男生的體能情況,從該校七年級抽取50名男生進(jìn)行1分鐘跳繩測試,把所得數(shù)據(jù)整理后,畫出頻數(shù)分布直方圖.已知圖中從左到右第一、第二、第三、第四小組的頻數(shù)的比為1:3:4:2.
(1)總體是 ,個(gè)體是 ,樣本容量是 ;
(2)求第四小組的頻數(shù)和頻率;
(3)求所抽取的50名男生中,1分鐘跳繩次數(shù)在100次以上(含100次)的人數(shù)占所抽取的男生人數(shù)的百分比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解本校七年級學(xué)生的數(shù)學(xué)作業(yè)完成情況,將完成情況分為四個(gè)等級:
隨機(jī)對該年級若干名學(xué)生進(jìn)行了調(diào)查,然后把調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中的信息解答下列問題:
(1)共調(diào)查了多少名同學(xué)?補(bǔ)全條形統(tǒng)計(jì)圖;
(2)完成等級為C等的對應(yīng)扇形的圓心角的度數(shù)是 ;
(3)該年級共有700人,估計(jì)該年級數(shù)學(xué)作業(yè)完成等級為D等的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖1是AD∥BC的一張紙條,按圖1→圖2→圖3,把這一紙條先沿EF折疊并壓平,再沿BF折疊并壓平,若圖3中∠CFE=18°,則圖2中∠AEF的度數(shù)為( )
A.120°B.108°C.126°D.114°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=8,BC=12,點(diǎn)D從B出發(fā)以每秒2個(gè)單位的速度在線段BC上從過點(diǎn)B向點(diǎn)C運(yùn)動(dòng),點(diǎn)E同時(shí)從點(diǎn)C出發(fā),以每秒2個(gè)單位的速度在線段AC上從點(diǎn)A運(yùn)動(dòng),連接AD、DE,設(shè)D、E兩點(diǎn)運(yùn)動(dòng)時(shí)間為秒.
(1)運(yùn)動(dòng)_____秒時(shí),CD=3AE.
(2)運(yùn)動(dòng)多少秒時(shí),△ABD≌△DCE能成立,并說明理由;
(3)若△ABD≌△DCE,∠BAC=則∠ADE=_______(用含的式子表示)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC的邊AB繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)()得到AB′,邊AC繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)()得到AC′,聯(lián)結(jié)B′C′,當(dāng)+=60°時(shí),我們稱AB′C′是ABC的“雙旋三角形”,如果等邊ABC的邊長為a, 那么它所得的“雙旋三角形”中B′C′=___________(用含a的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com