矩形ABCD的頂點A,B,C,D按順時針方向排列,若在平面直角坐標系內,B、D兩點對應的坐標分別為(2,0)、(0,0),且A、C兩點關于x軸對稱,則點C對應的坐標是
 
分析:根據(jù)矩形的性質及平面直角坐標系中兩個關于x軸成軸對稱的點的坐標特點:關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù).可知A,C兩點的橫坐標一定是1,再根據(jù)勾股定理可求出其縱坐標,從而得出點A坐標,點C坐標.
解答:解:已知B,D兩點的坐標分別是(2,0)、(0,0),
則可知A,C兩點的橫坐標一定是1,且關于x軸對稱,
則A,C兩點縱坐標互為相反數(shù),
設A點坐標為:(1,b),則有:(
(12+b2)
)2+(
(2-1)2+b2
)2=4
,
解得b=1,
所以點A坐標為(1,1),點C坐標為(1,-1).
點評:此題考查了平面直角坐標系的基本知識和矩形的性質.考查知識點比較多,要注意各個知識點之間的聯(lián)系,并能靈活應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,二次函數(shù)y=-mx2+4m的頂點坐標為(0,2),矩形ABCD的頂點B、C在精英家教網(wǎng)x軸上,A、D在拋物線上,矩形ABCD在拋物線與x軸所圍成的圖形內.
(1)求二次函數(shù)的解析式;
(2)設點A的坐標為(x,y),試求矩形ABCD的周長P關于自變量x的函數(shù)解析式,并求出自變量x的取值范圍;
(3)是否存在這樣的矩形ABCD,使它的周長為9?試證明你的結論.
(4)求出當x為何值時P有最大值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,已知矩形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3;拋物線y=-x2+bx+c經過坐標原點O和x軸上另一點E(4,0)
(1)當x取何值時,該拋物線取最大值?該拋物線的最大值是多少?
(2)將矩形ABCD以每秒1個單位長度的速度從圖1所示的位置沿x軸的正方向勻速平行移動,同時一動點P也以相同的速度從點A出發(fā)向B勻速移動.設它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖2所示).
①當t=
114
時,判斷點P是否在直線ME上,并說明理由;
②以P、N、C、D為頂點的多邊形面積是否可能為5?若有可能,求出此時N點的坐標;若無可能,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:在平面直角坐標系中,矩形ABCD的頂點A的坐標為(4,8),D是OC上一點,且CD:OD=3:5,連接AD,過D點作DE⊥AD交OB于E,過E作EF∥AD,交AB于F
(1)求經過A、D兩點的直線解析式;
(2)求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在矩形ABCD的頂點A處拴了一只小羊,在B、C、D處各有一筐青草,要使小羊至少能吃到一筐子里的草,且至少有一個筐子里的草吃不到.如果AB=5,BC=12,則拴羊繩的長l的取值范圍是
5≤r<13
5≤r<13

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)某地有三家工廠,分別位于矩形ABCD的頂點A、B及邊CD的中點P處,已知AB=16km,BC=12km,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD的區(qū)域上(含邊界),且與A,B等距離的一點O處建造一個污水處理廠,并鋪設排污管道AO,BO,OP.記管道總長為S km.下列說法正確的是( 。
A、S的最小值是8
13
B、S的最小值應該大于28
C、S的最小值是26
D、S的最小值應該小于26

查看答案和解析>>

同步練習冊答案