(本題滿分8分)通過學習三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖①在△ABC中,AB=AC,頂角A的正對記作sad A,這時sad A.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.根據(jù)上述角的正對定義,解下列問題:
(1)sad 60°=           .
(2)對于0°<A<180°,∠A的正對值sad A的取值范圍是
(3)如圖②,在Rt△ABC中,∠C=90°,sin A,試求sad A的值

 

 
 A

 
(1)1(2分);
(2)0<sadA<2(2分);
(3)(4分)  解析:
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(本題滿分8分)通過學習三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖①在△ABC中,AB=AC,頂角A的正對記作sad A,這時sad A.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.根據(jù)上述角的正對定義,解下列問題:

(1)sad 60°=           .

(2)對于0°<A<180°,∠A的正對值sadA的取值范圍是

(3)如圖②,在Rt△ABC中,∠C=90°,sin A,試求sad A的值

 

 

 
 A

B

 

B

 
 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分8分)

王大伯幾年前承辦了甲、乙兩片荒山,各栽100棵楊梅樹,成活98%,現(xiàn)已掛果,經(jīng)濟效益初步顯現(xiàn),為了分析收成情況,他分別從兩山上隨意各采摘了4棵樹上的楊梅,每棵的產(chǎn)量如拆線統(tǒng)計圖所示.

(1)分別計算甲、乙兩山樣本的平均數(shù),并估算出甲乙兩山楊梅的產(chǎn)量總和;

(2)試通過計算說明,哪個山上的楊梅產(chǎn)量較穩(wěn)定?

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011~2012學年江蘇省蘇州工業(yè)園區(qū)九年級上學期期中測試數(shù)學卷 題型:解答題

(本題滿分8分)通過學習三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖①在△ABC中,AB=AC,頂角A的正對記作sad A,這時sad A.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.根據(jù)上述角的正對定義,解下列問題:
(1)sad 60°=           .
(2)對于0°<A<180°,∠A的正對值sad A的取值范圍是
(3)如圖②,在Rt△ABC中,∠C=90°,sin A,試求sad A的值

 

 
 A

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆江蘇省蘇州工業(yè)園區(qū)九年級上學期期中測試數(shù)學卷 題型:解答題

(本題滿分8分)通過學習三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖①在△ABC中,AB=AC,頂角A的正對記作sad A,這時sad A.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.根據(jù)上述角的正對定義,解下列問題:

(1)sad 60°=            .

(2)對于0°<A<180°,∠A的正對值sad A的取值范圍是

(3)如圖②,在Rt△ABC中,∠C=90°,sin A,試求sad A的值

 

 

 
 A

B

 

B

 
 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習冊答案