【題目】如圖是二次函數(shù)(a、b、c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①當(dāng)時,;②;③;④3a+c>0,其中正確的是( )
A. ①③B. ①④C. ②③D. ②④
【答案】C
【解析】
由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)對稱軸判定b與0的關(guān)系以及2a+b=0;當(dāng)x=-1時,y=a-b+c;然后由圖象確定當(dāng)x取何值時,y>0.
①如圖,當(dāng)-1<x<3時,y不只是大于0.
故錯誤.
②∵對稱軸在y軸右側(cè),
∴a、b異號,
∴ab<0,故正確;
③∵對稱軸x=-=1,
∴2a+b=0;故正確;
④∵2a+b=0,
∴b=-2a,
∵當(dāng)x=-1時,y=a-b+c<0,
∴a-(-2a)+c=3a+c<0,故錯誤;
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將兩張長為5,寬為1的矩形紙條交叉,讓兩個矩形對角線交點重合,且使重疊部分成為一個菱形.當(dāng)兩張紙條垂直時,菱形周長的最小值是4,把一個矩形繞兩個矩形重合的對角線交點旋轉(zhuǎn)一定角度,在旋轉(zhuǎn)過程中,得出所有重疊部分為菱形的四邊形中,周長的最大值是( )
A. 8B. 10C. 10.4D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+2ax﹣3a(a>0)交x軸于A、B兩點,交y軸于點C,拋物線的頂點為D.
(1)填空:拋物線的對稱軸為 ,點A的坐標(biāo)為 ;點B的坐標(biāo)為 ;
(2)若△ADC的面積為3,求拋物線的解析式;
(3)在(2)的條件下,當(dāng)m≤x≤m+1,y的取值范圍是﹣4≤y≤2m,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解初三年級1000名學(xué)生的身體健康情況,從該年級隨機抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.
解答下列問題:
(1)這次抽樣調(diào)查的樣本容量是 ,并補全頻數(shù)分布直方圖;
(2)C組學(xué)生的頻率為 ,在扇形統(tǒng)計圖中D組的圓心角是 度;
(3)請你估計該校初三年級體重超過60kg的學(xué)生大約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在中,C、D分別為BM、AM上的點,四邊形ABCD內(nèi)接于,連接AC,;
如圖,求證:弧弧BD;
如圖,若AB為直徑,,求值;
如圖,在的條件下,E為弧CD上一點不與C、D重合,F為AB上一點,連接EF交AC于點N,連接DN、DE,若,,,求AN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+1(a≠0,a為實數(shù))的圖象過點A(-2,2),一次函數(shù)y=kx+b(k≠0,k、b為實數(shù))的圖象l經(jīng)過點B(0,2).
(1)求a的值并寫出二次函數(shù)表達式;
(2)求b的值;
(3)設(shè)直線l與二次函數(shù)圖象交于M、N兩點,過M作MC垂直x軸于點C,試證明:MB=MC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某景區(qū)的兩個景點A、B處于同一水平地面上、一架無人機在空中沿MN方向水平飛行進行航拍作業(yè),MN與AB在同一鉛直平面內(nèi),當(dāng)無人機飛行至C處時、測得景點A的俯角為45°,景點B的俯角為30°,此時C到地面的距離CD為100米,則兩景點A、B間的距離為__米(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC內(nèi)接于⊙O,過點A作直線EF,
(1)如圖1,若AB為直徑,要使得EF是⊙O的切線,還需要添加的條件是(只須寫出兩種不同情況)① 或② .
(2)如圖2,若AB為非直徑的弦,∠CAE=∠B,試說明EF是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓錐的底面半徑為10 cm,高為10cm.
(1)求圓錐的全面積;
(2)若一只螞蟻從底面上一點A出發(fā)繞圓錐側(cè)面一周回到SA上的點M處,且SM=3AM,求它所走的最短距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com