【題目】如圖是二次函數(shù)(ab、c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)(3,0)之間,對稱軸是x=1.對于下列說法:①當(dāng)時,;②;③;④3a+c>0,其中正確的是( )

A. ①③B. ①④C. ②③D. ②④

【答案】C

【解析】

由拋物線的開口方向判斷a0的關(guān)系,由拋物線與y軸的交點判斷c0的關(guān)系,然后根據(jù)對稱軸判定b0的關(guān)系以及2a+b=0;當(dāng)x=-1時,y=a-b+c;然后由圖象確定當(dāng)x取何值時,y0

①如圖,當(dāng)-1x3時,y不只是大于0
故錯誤.

②∵對稱軸在y軸右側(cè),
a、b異號,
ab0,故正確;
③∵對稱軸x=-=1
2a+b=0;故正確;
④∵2a+b=0,
b=-2a,
∵當(dāng)x=-1時,y=a-b+c0,
a--2a+c=3a+c0,故錯誤;

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將兩張長為5,寬為1的矩形紙條交叉,讓兩個矩形對角線交點重合,且使重疊部分成為一個菱形.當(dāng)兩張紙條垂直時,菱形周長的最小值是4,把一個矩形繞兩個矩形重合的對角線交點旋轉(zhuǎn)一定角度,在旋轉(zhuǎn)過程中,得出所有重疊部分為菱形的四邊形中,周長的最大值是(  )

A. 8B. 10C. 10.4D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+2ax3aa0)交x軸于A、B兩點,交y軸于點C,拋物線的頂點為D

1)填空:拋物線的對稱軸為   ,點A的坐標(biāo)為   ;點B的坐標(biāo)為   

2)若ADC的面積為3,求拋物線的解析式;

3)在(2)的條件下,當(dāng)mxm+1,y的取值范圍是﹣4≤y≤2m,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解初三年級1000名學(xué)生的身體健康情況,從該年級隨機抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A39.546.5;B46.553.5;C53.560.5D60.567.5;E67.574.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.

解答下列問題:

1)這次抽樣調(diào)查的樣本容量是 ,并補全頻數(shù)分布直方圖;

2C組學(xué)生的頻率為 ,在扇形統(tǒng)計圖中D組的圓心角是 度;

3)請你估計該校初三年級體重超過60kg的學(xué)生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在中,C、D分別為BMAM上的點,四邊形ABCD內(nèi)接于,連接AC,;

如圖,求證:弧BD;

如圖,若AB為直徑,,求值;

如圖,在的條件下,E為弧CD上一點不與CD重合,FAB上一點,連接EFAC于點N,連接DN、DE,若,,求AN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+1(a≠0,a為實數(shù))的圖象過點A(-22),一次函數(shù)y=kx+b(k≠0,k、b為實數(shù))的圖象l經(jīng)過點B(02).

(1)a的值并寫出二次函數(shù)表達式;

(2)b的值;

(3)設(shè)直線l與二次函數(shù)圖象交于M、N兩點,過MMC垂直x軸于點C,試證明:MB=MC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某景區(qū)的兩個景點A、B處于同一水平地面上、一架無人機在空中沿MN方向水平飛行進行航拍作業(yè),MNAB在同一鉛直平面內(nèi),當(dāng)無人機飛行至C處時、測得景點A的俯角為45°,景點B的俯角為30°,此時C到地面的距離CD100米,則兩景點A、B間的距離為__米(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC內(nèi)接于O,過點A作直線EF,

(1)如圖1,若AB為直徑,要使得EFO的切線,還需要添加的條件是(只須寫出兩種不同情況)①

(2)如圖2,若AB為非直徑的弦,∠CAE=∠B,試說明EFO的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓錐的底面半徑為10 cm高為10cm.

(1)求圓錐的全面積;

(2)若一只螞蟻從底面上一點A出發(fā)繞圓錐側(cè)面一周回到SA上的點M,SM=3AM,求它所走的最短距離.

查看答案和解析>>

同步練習(xí)冊答案