如圖,在直角坐標(biāo)系中,二次函數(shù)的頂點(diǎn)為C(4,-3),且在x軸上截得的線段AB=6,則二次函數(shù)的表達(dá)式為______;若拋物線與y軸交于點(diǎn)D,則四邊形DACB的面積是______.
二次函數(shù)的頂點(diǎn)為C(4,-3),因而函數(shù)的對稱軸是:x=4
線段AB=6,則A,B點(diǎn)的坐標(biāo)是(1,0)和(7,0)
設(shè)函數(shù)的解析式是y=a(x-4)2-3
把點(diǎn)(1,0)代入
就可以求出解析式是:y=
1
3
(x-4)2-3
即二次函數(shù)的表達(dá)式為y=
1
3
x2-
8
3
x+
7
3


在解析式中令x=0,解得D點(diǎn)的坐標(biāo)是(0,
7
3

∴四邊形DACB的面積=S=S△ABC+S△ABD=
1
2
AB•3+
1
2
AB•
7
3
=16.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=4.現(xiàn)以O(shè)為坐標(biāo)原點(diǎn),OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)B在第一象限內(nèi).將Rt△OAB沿OB折疊后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)C處.
(1)求點(diǎn)C的坐標(biāo);
(2)若拋物線y=ax2+bx(a≠0)經(jīng)過C、A兩點(diǎn),求此拋物線的解析式;
(3)若⊙P的半徑為R,圓心P在(2)的拋物線上運(yùn)動(dòng),問:是否存在這樣的點(diǎn)P,使得⊙P與兩坐標(biāo)軸都相切?若存在,請求出此時(shí)⊙P半徑R的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知直線y=-
1
2
x與拋物線y=-
1
4
x2+6交于A,B兩點(diǎn).
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求線段AB的垂直平分線的解析式;
(3)如圖2,取與線段AB等長的一根橡皮筋,端點(diǎn)分別固定在A,B兩處.用鉛筆拉著這根橡皮筋使筆尖P在直線AB上方的拋物線上移動(dòng),動(dòng)點(diǎn)P將與A,B構(gòu)成無數(shù)個(gè)三角形,這些三角形中是否存在一個(gè)面積最大的三角形?如果存在,求出最大面積,并指出此時(shí)P點(diǎn)的坐標(biāo);如果不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:m、n是方程x2-6x+5=0的兩個(gè)實(shí)數(shù)根,且m<n,拋物線y=-x2+bx+c的圖象經(jīng)過點(diǎn)A(m,0)、B(0,n).
(1)求這個(gè)拋物線的解析式;
(2)設(shè)(1)中拋物線與x軸的另一交點(diǎn)為C,拋物線的頂點(diǎn)為D,試求出點(diǎn)C、D的坐標(biāo)和△BCD的面積;
(3)P是線段OC上的一點(diǎn),過點(diǎn)P作PH⊥x軸,與拋物線交于H點(diǎn),若直線BC把△PCH分成面積之比為2:3的兩部分,請求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知拋物線y=ax2-2ax+b經(jīng)過梯形OABC的四個(gè)頂點(diǎn),若BC=10,梯形OABC的面積為18.
(1)求拋物線解析式;
(2)將圖1中梯形OABC的上下底邊所在的直線OA、CB以相同的速度同時(shí)向上平移,平移后的兩條直線分別交拋物線于點(diǎn)O1、A1、C1、B1,得到如圖2的梯形O1A1B1C1.設(shè)梯形O1A1B1C1的面積為S,A1、B1的坐標(biāo)分別為(x1,y1)、(x2,y2).用含S的代數(shù)式表示x2-x1,并求出當(dāng)S=36時(shí)點(diǎn)A1的坐標(biāo);
(3)如圖3,設(shè)圖1中點(diǎn)D坐標(biāo)為(1,3),M為拋物線的頂點(diǎn),動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位長度的速度沿著線段BC運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以與點(diǎn)P相同的速度沿著線段DM運(yùn)動(dòng).P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)M時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)P、Q兩點(diǎn)的運(yùn)動(dòng)時(shí)間為t,是否存在某一時(shí)刻t,使得直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對稱軸圍成的三角形相似?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以邊長為
2
的正方形ABCD的對角線所在直線建立平面直角坐標(biāo)系,拋物線y=x2+bx+c經(jīng)過點(diǎn)B且與直線AB只有一個(gè)公共點(diǎn).
(1)求直線AB的解析式;
(2)求拋物線y=x2+bx+c的解析式;
(3)若點(diǎn)P為(2)中拋物線上一點(diǎn),過點(diǎn)P作PM⊥x軸于點(diǎn)M,問是否存在這樣的點(diǎn)P,使△PMC△ADC?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,二次函數(shù)y=x2+(2k-1)x+k+1的圖象與x軸相交于O、A兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點(diǎn)B,使銳角△AOB的面積等于3.求點(diǎn)B的坐標(biāo);
(3)對于(2)中的點(diǎn)B,在拋物線上是否存在點(diǎn)P,使∠POB=90°?若存在,求出點(diǎn)P的坐標(biāo),并求出△POB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:矩形ABCD的頂點(diǎn)B、C在x軸的正半軸上,A、D在拋物線y=-
2
3
x2+
8
3
x上,矩形的頂點(diǎn)均為動(dòng)點(diǎn),且矩形在拋物線與x軸圍成的區(qū)域里.
(1)設(shè)點(diǎn)A的坐標(biāo)為(x,y),試求矩形的周長p關(guān)于變量x的函數(shù)的解析式,并寫出x的取值范圍;
(2)是否存在這樣的矩形ABCD,它的周長p=9?試證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

蔬菜基地種植的某種蔬菜,根據(jù)今年的市場行情,預(yù)計(jì)從3月1日起的50天內(nèi),它的市場售價(jià)y1(萬元)與上市時(shí)間x的關(guān)系可用圖(1)中的一條折線表示;他的種植成本y2(萬元)與上市時(shí)間x的關(guān)系可用力(2)中的拋物線的一部分來表示.若市場售價(jià)減去種植成本為純利潤

(1)求y1、y2關(guān)于x的函數(shù)關(guān)系式;
(2)哪天上市這種綠色蔬菜既不賠本也不賺錢?
(3)哪天上市的蔬菜的利潤最大?

查看答案和解析>>

同步練習(xí)冊答案