Rt△ABC中,∠ACB=90°,CD⊥AB于D,DE⊥AC于E,那么和△ABC相似但不全等的三角形共有


  1. A.
    1個
  2. B.
    2個
  3. C.
    3個
  4. D.
    4個
D
分析:根據(jù)已知及相似三角形的判定,全等三角形的判定方法對其進(jìn)行分析從而得到答案.
解答:解:∵∠ACB=90°,CD⊥AB,DE⊥AC
∴∠ACB=∠ADC=∠CDB=∠AED=∠DEC=90°
∵∠A=∠A,∠B=∠B,∠ACD=∠DCE
∴△ADC∽△CDB∽△ACB∽△AED,△ACD∽△DCE
∴△DCE∽△ABC
∴共有4個和△ABC相似但不全等的三角形
故選D
點(diǎn)評:此題考查了相似三角形的判定:
①如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似;
②如果兩個三角形的兩條對應(yīng)邊的比相等,且夾角相等,那么這兩個三角形相似;
③如果兩個三角形的兩個對應(yīng)角相等,那么這兩個三角形相似.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足為D,交AB于點(diǎn)E.又點(diǎn)F在DE的精英家教網(wǎng)延長線上,且AF=CE.求證:四邊形ACEF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠BAC=90°,點(diǎn)D、E、F分別是三邊的中點(diǎn),且CF=3cm,則DE=
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,則AD=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰Rt△ABC中,∠C=90°,正方形DEFG的頂點(diǎn)D在邊AC上,點(diǎn)E、F在邊AB上,精英家教網(wǎng)點(diǎn)G在邊BC上.
(1)求證:AE=BF;
(2)若BC=
2
cm,求正方形DEFG的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠C=90°,D為AB的中點(diǎn),DE⊥AB,AB=20,AC=12,則四邊形ADEC的面積為
 

查看答案和解析>>

同步練習(xí)冊答案