【題目】如圖,長(zhǎng)方體的長(zhǎng)為15,寬為10,高為20,點(diǎn)B離點(diǎn)C的距離為5,一只螞蟻如果要沿著長(zhǎng)方體的表面從點(diǎn)A爬到點(diǎn)B,需要爬行的最短距離是(  )

A.5B.25C.10+5D.35

【答案】B

【解析】

要求螞蟻爬行的最短距離,需將長(zhǎng)方體的側(cè)面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果.

解:將長(zhǎng)方體展開,連接AB,

根據(jù)兩點(diǎn)之間線段最短,

(1)如圖,BD10+515,AD20,

由勾股定理得:AB

2)如圖,BC5,AC20+1030,

由勾股定理得,AB

3)只要把長(zhǎng)方體的右側(cè)表面剪開與上面這個(gè)側(cè)面所在的平面形成一個(gè)長(zhǎng)方形,如圖:

∵長(zhǎng)方體的寬為10,高為20,點(diǎn)B離點(diǎn)C的距離是5

BDCD+BC20+525,AD10,

在直角三角形ABD中,根據(jù)勾股定理得:

AB;

由于

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn)D是等腰直角三角形ABC斜邊BC所在直線上一點(diǎn)(不與點(diǎn)B重合),連接AD.

(1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),將線段AD繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°得到線段AE,連接CE.求證:BD=CE,BDCE;

(2)如圖2,當(dāng)點(diǎn)D在線段BC延長(zhǎng)線上時(shí),將線段AD繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°得到線段AE,連接CE.請(qǐng)畫出圖形。上述結(jié)論是否仍然成立,并說明理由;

(3)根據(jù)圖2,請(qǐng)直接寫出AD、BD、CD三條線段之間的數(shù)量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,且過點(diǎn)A(3,0),二次函數(shù)圖象的對(duì)稱軸是x=1,下列結(jié)論:

①b2>4ac;②ac>0; ③當(dāng)x>1時(shí),yx的增大而減小; ④3a+c>0;⑤任意實(shí)數(shù)m,a+b≥am2+bm.

其中結(jié)論正確的序號(hào)是( 。

A. ①②③ B. ①④⑤ C. ③④⑤ D. ①③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+mx+n與直線y=﹣x+3交于A,B兩點(diǎn),交x軸與D,C兩點(diǎn),連接AC,BC,已知A(0,3),C(3,0).

(1)求拋物線的關(guān)系式和tanBAC的值;

(2)P為拋物線上一動(dòng)點(diǎn),連接PA,過點(diǎn)PPQOAy軸于點(diǎn)Q,問:是否存在點(diǎn)P使得以A,P,Q為頂點(diǎn)的三角形與ACB相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)在AB上找一點(diǎn)M,使得OM+DM的值最小,直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+bx+c(b,c均是常數(shù))經(jīng)過點(diǎn)O(0,0),A(4,4),與x軸的另一交點(diǎn)為點(diǎn)B,且拋物線對(duì)稱軸與線段OA交于點(diǎn)P.

(1)求該拋物線的解析式和頂點(diǎn)坐標(biāo);

(2)過點(diǎn)Px軸的平行線l,若點(diǎn)Q是直線上的動(dòng)點(diǎn),連接QB.

①若點(diǎn)O關(guān)于直線QB的對(duì)稱點(diǎn)為點(diǎn)C,當(dāng)點(diǎn)C恰好在直線l上時(shí),求點(diǎn)Q的坐標(biāo);

②若點(diǎn)O關(guān)于直線QB的對(duì)稱點(diǎn)為點(diǎn)D,當(dāng)線段AD的長(zhǎng)最短時(shí),求點(diǎn)Q的坐標(biāo)(直接寫出答案即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣2,4),B(﹣4,1),C(0,1).

(1)畫出與△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)C1的坐標(biāo);

(2)畫出以C1為旋轉(zhuǎn)中心,將△A1B1C1逆時(shí)針旋轉(zhuǎn)90°后的△A2B2C2

(3)尺規(guī)作圖:連接A1A2,在C1A2邊上求作一點(diǎn)P,使得點(diǎn)PA1A2的距離等于PC1的長(zhǎng)(保留作圖痕跡,不寫作法);

(4)請(qǐng)直接寫出∠C1A1P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,∠ABC=90°,∠C=30°,AC 的垂直平分線交 BC 于點(diǎn) D,交AC 于點(diǎn) E.

(1)判斷 BE △DCE 的外接圓⊙O 的位置關(guān)系,并說明理由;

(2) BE=,BD=1,求△DCE 的外接圓⊙O 的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南沙群島是我國(guó)固有領(lǐng)土,現(xiàn)在我南海漁民要在南沙某海島附近進(jìn)行捕魚作業(yè),當(dāng)漁船航行至B處時(shí),測(cè)得該島位于正北方向海里的C處,為了防止某國(guó)還巡警干擾,就請(qǐng)求我A處的魚監(jiān)船前往C處護(hù)航,已知C位于A處的北偏東45°方向上,A位于B的北偏西30°的方向上,求A、C之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了促進(jìn)足球進(jìn)校園活動(dòng)的開展,某市舉行了中學(xué)生足球比賽活動(dòng)現(xiàn)從A,B,C三支獲勝足球隊(duì)中,隨機(jī)抽取兩支球隊(duì)分別到兩所邊遠(yuǎn)地區(qū)學(xué)校進(jìn)行交流.

(1)請(qǐng)用列表或畫樹狀圖的方法(只選擇其中一種),表示出抽到的兩支球隊(duì)的所有可能結(jié)果;

(2)求出抽到B隊(duì)和C隊(duì)參加交流活動(dòng)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案