【題目】如圖,在等腰直角ABC中,BAC=90°,AC=AB,以AB為斜邊在ABC內(nèi)部作RtABD,連接CD,若∠ADC=135°,SABD=9,則線段AD的長度為_____

【答案】3

【解析】

作輔助線,構(gòu)建三角形AEB,由旋轉(zhuǎn)的性質(zhì)可得AED和是等腰直角三角形BED是等腰直角三角形,設(shè)AD=AE=x,則ED=BE=x,BD==2x,根據(jù)SABD=9,可求得x的值,即AD的長.

ADC繞點(diǎn)A順時針旋轉(zhuǎn)90°得到AEB,連接ED,

∴∠EAD=90°,AE=AD,AEB=ADC=135°,

∴△AED是等腰直角三角形,

∴∠AED=ADE=45°,

∴∠BED=135°-45°=90°,

∵∠ADB=90°,

∴∠BDE=45°,

∴△BED是等腰直角三角形,

設(shè)AD=AE=x,則ED=BE=x,BD==2x,

SABD=9,

ADBD=9,

x2x=9,

x2=9,

x1=3,x2=-3,

AD=3,

故答案為:3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】河南省旅游資源豐富,2013~2017年旅游收入不斷增長,同比增速分別為:15.3%,12.7%,15.3%,14.5%,17.1%.關(guān)于這組數(shù)據(jù),下列說法正確的是(  )

A. 中位數(shù)是12.7% B. 眾數(shù)是15.3%

C. 平均數(shù)是15.98% D. 方差是0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水平桌面上有甲、乙、丙三個圓柱形容器(容器足夠高),底面半徑之比為,用兩個相同的管子在容器的高度處連通(即管子底端離容器底).現(xiàn)三個容器中,只有甲中有水,水位高,如圖所示.若每分鐘同時向乙和丙注入相同量的水,開始注水分鐘,乙的水位上升,則開始注入__________分鐘的水量后,甲與乙的水位高度之差是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上有A、B、C三個點(diǎn),分別表示有理數(shù)-12、-5、5,動點(diǎn)PA出發(fā),以每秒1個單位的速度向終點(diǎn)C移動,設(shè)移動時間為 t秒。

(1)用含t的代數(shù)式表示P到點(diǎn)A和點(diǎn)C的距離:PA=________ , PC=________。

(2)當(dāng)點(diǎn)P從點(diǎn)A出發(fā),向點(diǎn)C移動,點(diǎn)Q以每秒3個單位從點(diǎn)C出發(fā),向終點(diǎn)A移動,請求出經(jīng)過幾秒點(diǎn)P與點(diǎn)Q兩點(diǎn)相遇?

(3)當(dāng)點(diǎn)P運(yùn)動到B點(diǎn)時,點(diǎn)QA點(diǎn)出發(fā),以每秒3個單位的速度向C點(diǎn)運(yùn)動,Q點(diǎn)到達(dá)C點(diǎn)后,再立即以同樣的速度返回,運(yùn)動到終點(diǎn)A,在點(diǎn)Q開始運(yùn)動后,P、Q兩點(diǎn)之間的距離能否為2個單位?如果能,請求出此時點(diǎn)P表示的數(shù);如果不能,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E、F是ABCD對角線AC上的兩點(diǎn),且BE⊥AC,DF⊥AC.
(1)求證:△ABE≌△CDF;
(2)請寫出圖中除△ABE≌△CDF外其余兩對全等三角形(不再添加輔助線).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知∠ABC=90°,△ABC是等腰三角形,點(diǎn)D為斜邊AC的中點(diǎn),連接DB,過點(diǎn)A作BAC的平分線,分別與DB,BC相交于點(diǎn)E,F(xiàn).

(1)求證:BE=BF;

(2)如圖2,連接CE,在不添加任何輔助線的條件下,直接寫出圖中所有的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長春外國語學(xué)校為了創(chuàng)建全省“最美書屋”,購買了一批圖書,其中科普類圖書平均每本的價(jià)格比文學(xué)類圖書平均每本的價(jià)格多5.已知學(xué)校用12000元購買的科普類圖書的本數(shù)與用9000元購買的文學(xué)類圖書的本數(shù)相等,求學(xué)校購買的科普類圖書和文學(xué)類圖書平均每本的價(jià)格各是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是正方形ABCD的對角線BD上一點(diǎn),⊙O與邊AB,BC都相切,點(diǎn)E,F(xiàn)分別在AD,DC上,現(xiàn)將△DEF沿著EF對折,折痕EF與⊙O相切,此時點(diǎn)D恰好落在圓心O處.若DE=2,則正方形ABCD的邊長是(
A.3
B.4
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A1,A2,A3,A4是數(shù)軸上的四個不同點(diǎn),若|A1A3|=λ|A1A2|,|A1A4|=η|A1A2|,且,則稱A3,A4調(diào)和分割A(yù)1,A2.已知平面上的點(diǎn)C,D調(diào)和分割點(diǎn)A,B,則( )

A. 點(diǎn)C可能是線段AB的中點(diǎn)

B. 點(diǎn)C,D可能同時在線段AB上

C. 點(diǎn)D一定不是線段AB的中點(diǎn)

D. 點(diǎn)C,D可能同時在線段AB的延長線上

查看答案和解析>>

同步練習(xí)冊答案