(1998•紹興)已知:如圖,平行四邊形ABCD面積為12,AB邊上的高DE=3,則DC的長(zhǎng)是( )

A.8
B.6
C.4
D.3
【答案】分析:平行四邊形的面積=底×高,根據(jù)平行四邊形的性質(zhì),DE是AB邊上的高,當(dāng)然也是CD邊上的高,由面積公式,列式求解.
解答:解:依題意:AB•DE=12,把DE=3代入,得AB=4,
由平行四邊形兩組對(duì)邊分別相等可知,DC=AB=4.故選C.
點(diǎn)評(píng):本題主要考查的是平行四邊形的面積公式及性質(zhì),屬于簡(jiǎn)單題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:1998年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(01)(解析版) 題型:解答題

(1998•紹興)已知:拋物線y=-x2+(m+2)x+m-1與x軸交于A、B兩點(diǎn)(點(diǎn)A、B分別在原點(diǎn)O的左、右兩側(cè)),以O(shè)A、OB為直徑作⊙O1和⊙O2
(1)請(qǐng)問(wèn):⊙O1和⊙O2,能否為等圓?若能,求出其半徑的長(zhǎng)度;若不能,說(shuō)明理由;
(2)設(shè)拋物線向上平移4個(gè)單位后,⊙O1、⊙O2的面積分別成為S1、S2,且4S2-16S1=5π,求平移后所得拋物線的解析式;
(3)由(2)所得的拋物線與y軸交于點(diǎn)C,⊙O1和⊙O2的一條外公切線MN分別交x軸和y軸于點(diǎn)P、Q(M、N為切點(diǎn),如圖所示),求△CPQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:1998年浙江省紹興市中考數(shù)學(xué)試卷 題型:解答題

(1998•紹興)已知:拋物線y=-x2+(m+2)x+m-1與x軸交于A、B兩點(diǎn)(點(diǎn)A、B分別在原點(diǎn)O的左、右兩側(cè)),以O(shè)A、OB為直徑作⊙O1和⊙O2
(1)請(qǐng)問(wèn):⊙O1和⊙O2,能否為等圓?若能,求出其半徑的長(zhǎng)度;若不能,說(shuō)明理由;
(2)設(shè)拋物線向上平移4個(gè)單位后,⊙O1、⊙O2的面積分別成為S1、S2,且4S2-16S1=5π,求平移后所得拋物線的解析式;
(3)由(2)所得的拋物線與y軸交于點(diǎn)C,⊙O1和⊙O2的一條外公切線MN分別交x軸和y軸于點(diǎn)P、Q(M、N為切點(diǎn),如圖所示),求△CPQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:1998年浙江省紹興市中考數(shù)學(xué)試卷 題型:解答題

(1998•紹興)已知:如圖,△ABC中,點(diǎn)D、E分別在AB、AC上,DE∥BC,過(guò)A、D、C點(diǎn)的圓交DE的延長(zhǎng)線于F.求證:△FCE∽△ABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:1998年浙江省紹興市中考數(shù)學(xué)試卷 題型:選擇題

(1998•紹興)已知直線y=3x+k(k≠0)不過(guò)第二象限,雙曲線上有兩點(diǎn)A(x1,y1)、B(x2,y2),若x2<x1<0,則y1與y2的大小關(guān)系是( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:1998年浙江省紹興市中考數(shù)學(xué)試卷 題型:選擇題

(1998•紹興)已知:如圖,平行四邊形ABCD面積為12,AB邊上的高DE=3,則DC的長(zhǎng)是( )

查看答案和解析>>

同步練習(xí)冊(cè)答案