【題目】如圖(1),在等邊三角形中,是邊上的動點,以為一邊,向上作等邊三角形,連接.
(1)和全等嗎?請說明理由;
(2)試說明:;
(3)如圖(2),將動點運動到邊的延長線上,所作三角形仍為等邊三角形,請問是否仍有?請說明理由.
【答案】(1)和全等,理由見解析;(2)過程見解析;(3)仍有,理由見解析.
【解析】
(1)要證兩個三角形全等,已知的條件有:AC=BC,CE=CD,且∠BCD和∠ACE都是60°減去一個∠ACD,即可證明兩個三角形全等;
(2)根據(jù)△DBC≌△EAC可得∠EAC=∠B=60°,又∠ACB=60°,所以∠EAC=∠ACB,即可得出結(jié)論;
(3)結(jié)合(1)(2)問的思路證明即可得出答案.
解:(1)和全等
證明:∵△ABC和△DEC均為等邊三角形
∴∠ACB=∠ECD=60°,BC=AC,CD=CE
又∠ACB=∠BCD+∠ACD
∠ECD=∠ECA+∠ACD
∴∠BCD=∠ECA
在△DBC和△EAC中
∴△DBC≌△EAC(SAS)
(2)∵△DBC≌△EAC
∴∠EAC=∠B=60°
又∠ACB=60°
∴∠EAC=∠ACB
∴AE∥BC
(3)仍有AE∥BC
理由:∵△ABC和△DEC均為等邊三角形
∴∠ACB=∠ECD=60°,BC=AC,CD=CE
∴∠BCA+∠ACD=∠ACD+∠DCE
∴∠BCD=∠ACE
在△DBC和△EAC中
∴△DBC≌△EAC(SAS)
∴∠EAC=∠B=60°
又∠ACB=60°
∴∠EAC=∠ACB
∴AE∥BC
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 已知,反比例函數(shù)y=的圖象和一次函數(shù)的圖象交于A、B兩點,點A的橫坐標(biāo)是-1,點B的縱坐標(biāo)是-1.
(1)求這個一次函數(shù)的表達(dá)式;
(2)若點P(m,n)在反比例函數(shù)圖象上,且點P關(guān)于x軸對稱的點Q恰好落在一次函數(shù)的圖象上,求m2+n2的值;
(3)若M(x1,y1),N(x2,y2)是反比例函數(shù)在第一象限圖象上的兩點,滿足x2-x1=2,y1+y2=3,求△MON的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,AB=AC=5,BC=6,AD是BC邊上的中線,四邊形ADBE是平行四邊形.
(1)求證:四邊形ADBE是矩形;
(2)求矩形ADBE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列出下列問題中的函數(shù)關(guān)系式,并判斷它們是否為反比例函數(shù).
(1)某農(nóng)場的糧食總產(chǎn)量為1 500t,則該農(nóng)場人數(shù)y(人)與平均每人占有糧食量x(t)的函數(shù)關(guān)系式;
(2)在加油站,加油機顯示器上顯示的某一種油的單價為每升4.75元,總價從0元開始隨著加油量的變化而變化,則總價y(元)與加油量x(L)的函數(shù)關(guān)系式;
(3)小明完成100m賽跑時,時間t(s)與他跑步的平均速度v(m/s)之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,甲地到乙地的路程為450千米,一輛大貨車從甲地前往乙地運送物資,行駛1小時在途中某地出現(xiàn)故障,立即通知技術(shù)人員乘小汽車從甲地趕來維修(通知時間忽略不計),小汽車到達(dá)該地后經(jīng)過半小時修好大貨年后以原速原路返甲地,小汽車在返程途中當(dāng)走到一半路程時發(fā)現(xiàn)有重要物品落在大貨車上,于是立即掉頭以原速追趕大貨車,追上大貨車取下物品(取物品時間忽略不計)后以原速原路返回甲地,大貨車修好后以原速前往乙地,如圖是兩車距甲地的路程y(千米)與大貨車所用時間x(小時)之間的函數(shù)圖象,則當(dāng)小汽車第二次追上大貨車時,大貨車距離乙地_____千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=kx+2圖象與反比例函數(shù)y2=圖象相交于A,B兩點,已知點B的坐標(biāo)為(3,﹣1).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)請直接寫出不等式kx﹣≤﹣2的解集;
(3)點C為x軸上一動點,當(dāng)S△ABC=3時,求點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y=的圖象與一次函數(shù)y=kx+m的圖象相交于點A(2,1).
(1)分別求出這兩個函數(shù)的解析式;
(2)當(dāng)x取什么范圍時,反比例函數(shù)值大于0;
(3)若一次函數(shù)與反比例函數(shù)另一交點為B,且縱坐標(biāo)為﹣4,當(dāng)x取什么范圍時,反比例函數(shù)值大于一次函數(shù)的值;
(4)試判斷點P(﹣1,5)關(guān)于x軸的對稱點P′是否在一次函數(shù)y=kx+m的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為∠CAF的角平分線,BD=CD,∠DBC=∠DCB,∠DCA=∠ABD,過D作DE⊥AC于E,DF⊥AB交BA的延長線于F,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中的網(wǎng)格由單位正方形構(gòu)成,中,點坐標(biāo)為,點坐標(biāo)為,點坐標(biāo)為.
(1)的長為_______;
(2)求證:;
(3)若以、、及點為頂點的四邊形為平行四邊形,寫出點在第一象限時的坐標(biāo)______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com