【題目】如圖(1),在等邊三角形中,邊上的動點,以為一邊,向上作等邊三角形,連接

1全等嗎?請說明理由;

2)試說明:;

3)如圖(2),將動點運動到邊的延長線上,所作三角形仍為等邊三角形,請問是否仍有?請說明理由.

【答案】1全等,理由見解析;(2)過程見解析;(3)仍有,理由見解析.

【解析】

1)要證兩個三角形全等,已知的條件有:AC=BC,CE=CD,且∠BCD和∠ACE都是60°減去一個∠ACD,即可證明兩個三角形全等;

2)根據(jù)DBCEAC可得∠EAC=B=60°,又∠ACB=60°,所以∠EAC=ACB,即可得出結(jié)論;

3)結(jié)合(1)(2)問的思路證明即可得出答案.

解:(1全等

證明:∵△ABCDEC均為等邊三角形

∴∠ACB=ECD=60°,BC=AC,CD=CE

又∠ACB=BCD+ACD

ECD=ECA+ACD

∴∠BCD=ECA

DBCEAC

DBCEACSAS

2)∵DBCEAC

∴∠EAC=B=60°

又∠ACB=60°

∴∠EAC=ACB

AEBC

3)仍有AEBC

理由:∵△ABCDEC均為等邊三角形

∴∠ACB=ECD=60°BC=AC,CD=CE

∴∠BCA+ACD=ACD+DCE

∴∠BCD=ACE

DBCEAC

DBCEACSAS

∴∠EAC=B=60°

又∠ACB=60°

∴∠EAC=ACB

AEBC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 已知,反比例函數(shù)y=的圖象和一次函數(shù)的圖象交于AB兩點,點A的橫坐標(biāo)是-1,點B的縱坐標(biāo)是-1

1)求這個一次函數(shù)的表達(dá)式;

2)若點Pm,n)在反比例函數(shù)圖象上,且點P關(guān)于x軸對稱的點Q恰好落在一次函數(shù)的圖象上,求m2+n2的值;

3)若Mx1,y1),Nx2,y2)是反比例函數(shù)在第一象限圖象上的兩點,滿足x2-x1=2y1+y2=3,求△MON的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在ABC中,AB=AC=5BC=6,ADBC邊上的中線,四邊形ADBE是平行四邊形.

1)求證:四邊形ADBE是矩形;

2)求矩形ADBE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列出下列問題中的函數(shù)關(guān)系式,并判斷它們是否為反比例函數(shù).

(1)某農(nóng)場的糧食總產(chǎn)量為1 500t,則該農(nóng)場人數(shù)y(人)與平均每人占有糧食量x(t)的函數(shù)關(guān)系式;

(2)在加油站,加油機顯示器上顯示的某一種油的單價為每升4.75元,總價從0元開始隨著加油量的變化而變化,則總價y(元)與加油量x(L)的函數(shù)關(guān)系式;

(3)小明完成100m賽跑時,時間t(s)與他跑步的平均速度v(m/s)之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,甲地到乙地的路程為450千米,一輛大貨車從甲地前往乙地運送物資,行駛1小時在途中某地出現(xiàn)故障,立即通知技術(shù)人員乘小汽車從甲地趕來維修(通知時間忽略不計),小汽車到達(dá)該地后經(jīng)過半小時修好大貨年后以原速原路返甲地,小汽車在返程途中當(dāng)走到一半路程時發(fā)現(xiàn)有重要物品落在大貨車上,于是立即掉頭以原速追趕大貨車,追上大貨車取下物品(取物品時間忽略不計)后以原速原路返回甲地,大貨車修好后以原速前往乙地,如圖是兩車距甲地的路程y(千米)與大貨車所用時間x(小時)之間的函數(shù)圖象,則當(dāng)小汽車第二次追上大貨車時,大貨車距離乙地_____千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1kx+2圖象與反比例函數(shù)y2圖象相交于A,B兩點,已知點B的坐標(biāo)為(3,﹣1)

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)請直接寫出不等式kx2的解集;

3)點Cx軸上一動點,當(dāng)SABC3時,求點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y=的圖象與一次函數(shù)y=kx+m的圖象相交于點A2,1).

(1)分別求出這兩個函數(shù)的解析式;

(2)當(dāng)x取什么范圍時,反比例函數(shù)值大于0;

(3)若一次函數(shù)與反比例函數(shù)另一交點為B,且縱坐標(biāo)為﹣4,當(dāng)x取什么范圍時,反比例函數(shù)值大于一次函數(shù)的值;

(4)試判斷點P(﹣1,5)關(guān)于x軸的對稱點P′是否在一次函數(shù)y=kx+m的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD為∠CAF的角平分線,BD=CD,∠DBC=∠DCB,∠DCA=∠ABD,過DDE⊥ACE,DF⊥ABBA的延長線于F,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中的網(wǎng)格由單位正方形構(gòu)成,中,點坐標(biāo)為,點坐標(biāo)為,點坐標(biāo)為

1的長為_______;

2)求證:

3)若以、、及點為頂點的四邊形為平行四邊形,寫出點在第一象限時的坐標(biāo)______

查看答案和解析>>

同步練習(xí)冊答案